\qquad
**Set your calculator to DEGREE mode

1. Pythagorean Theorem. Draw a right triangle. Label the sides a, b and c (c must be the longest side). Side c is called the hypotenuse.
Now draw a square on each side of the triangle. State the relationship between the squares on the sides of the right triangle. \qquad

Ex. 1 Determine the length of the indicated side.

Ex. 2 Brad walks 1.7 km North and then 1.5 km East along the sides of a park. Dan starts at the same point and takes a shortcut along the diagonal. How much shorter is Dan's walk?

2. Solving Equations.

Ex. 1 Solve for x to the nearest tenth.
a) $\frac{12}{x} \neq \frac{20}{3}$
b) $\frac{6.7}{2.8}=\frac{x}{4.2}$
$20 x=36$
$2.8 x=6.7 \times 4.2$
$\frac{20 x}{20}=\frac{36}{20}$
$2.8 x=28.14$
$\frac{2.8 x}{2.8}=\frac{28.4}{2.8}$
$x=10.1$
3. Primary Trig Ratios. Given a right triangle with angle θ (theta), label the sides "hypotenuse", side "opposite" to angle θ, and side "adjacent" to angle θ.

Opp

Adj
To remember the 3 primary trig. ratios of the sides of a right triangle relative to angle θ use \qquad SOHCAH TO
The 3 primary trig ratios are:

$$
\operatorname{sine} \theta=\frac{\text { Opposite }}{\text { Hypotenuse }} \quad \sin \theta=\frac{0}{H}
$$

cosine $\theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}$

$$
\cos \theta=\frac{A}{H}
$$

$$
\text { tangent } \theta=\frac{\text { Opposite }}{\text { Adjacent }} \quad \tan \theta=\frac{0}{A}
$$

Ex. 1 Write the 3 primary trig ratios relative to
θ.

Ex. 2 Evaluate to four decimal places.
a) $\sin 54^{5}=0.8090$
b) $\cos 14^{\circ}=0.9703$
c) $\tan 61^{\circ}=1,8040$

MAP Unit 2 lesson 2 -blackboard.
Determining Lengths of Sides in Right Triangles
Ex.I Determine the length of x to the nearest
a)

Recall:
Angle of Elevation/ Inclination is measured UP from the HORIZONTAL

$$
\begin{aligned}
& \text { Have: } 0=7.2 \\
& \text { Need: side } A \\
& \text { Use } \tan 35^{\circ}=\frac{0}{A} \\
& \tan 35^{\circ}=\frac{7.2}{x} \\
& \tan 35^{\circ} \times \frac{7.2}{x} \\
& \tan 35^{\circ} x=7.2 \\
& 1\left(\tan 35 \circ^{\circ} x\right. \\
& 1 \tan 55^{\circ} \\
& x=\frac{7.2}{\tan 35^{\circ}} \\
& x=10.28 \\
& x=10.3
\end{aligned}
$$

Angle of Depression/ Declination is always measured DOWN from the HorIZONTAL tenth.

With $\tan \left(\frac{1}{4}\right.$ only with tan) if the unknown is in denominator, you may switch the reference angle so the unknown $\angle X=180^{\circ}-90^{\circ}-35^{\circ}$ $\angle x=55^{\circ}$
then $A=7.2$.

$$
\tan 55^{\circ}=\frac{x}{7,2}
$$

$$
x=7,2 \tan 55^{\circ}
$$

$$
x=10.3
$$

7.92 m from the flagpole.

She is holding a dinometer at eye level 1.6 mabove the ground. How tall is the flagpole if she measures a 50° angle of elevation?

(1) Draw and label diagram.
(2) Put A, H, O on diagram.using 50° as reference angle.
We have A, looking for 0 so use tan

$$
\begin{aligned}
& \tan 50^{\circ}=\frac{x}{7.92} \\
& x=7.92 \tan 50^{\circ} \\
& x=9.4
\end{aligned}
$$

\therefore the flagpole is $1.6+9.4=11.0 \mathrm{~m}$ tall.

Determining Measures of Angles in Right Triangles
Trig ratios can also be used to find the measures of angles of a right triangle that are not known.

Examples: For the following triangles, identify the trig ratio to use, write the equation and solve it to one decimal place using the inverse trig buttons

$\tan ^{-1}$ on your calculator.

$$
A=12 \quad 0=35
$$

Have: Adj, OpP $\quad \tan x=\frac{35}{12}$
Need: x
Use: $\tan x=\frac{0}{A}$

$$
x=\tan ^{-1}(35 \div 12)
$$

$$
x \doteq 71.1^{\circ}
$$

$$
\cos x=\frac{91}{100}
$$

Need: x

$$
x=\cos ^{-1}(0.91)
$$

Use: $\cos x=\frac{A}{H}$
$A=91 \quad \begin{aligned} & H=100 \\ & \text { Have: } A d j,\end{aligned} \quad H y p$.

$$
x=24,5^{\circ} \quad 24.49
$$

c)

$\begin{aligned} & 0=40 \\ & \text { Have: } H P P, ~ \\ & H y p\end{aligned}$
Need: x

$$
\begin{aligned}
& x=\sin ^{-1}\left(\frac{40}{50}\right) \\
& x=\sin ^{-1}(0.8) \\
& x=53.1^{\circ} \quad 53.13
\end{aligned}
$$

Ex. 2 Solve $\triangle \mathrm{XYZ}$ given that $\angle X=90^{\circ}, x=8.2 \mathrm{~cm}, z=6.0 \mathrm{~cm}$.
Use: $\sin x=\frac{0}{H}$

To solve means to determine the values of all missing sides and angles.

$$
\begin{align*}
& y^{2}=x^{2}-z^{2} \\
& y^{2}=8.2^{2}-6.0^{2} \\
& y^{2}=67.24-36 \\
& y^{2}=31.24 \\
& y=\sqrt{31.24} \\
& y=5.6
\end{align*}
$$

$$
\begin{aligned}
& \sin z=\frac{6}{8.2} \\
& z=\sin ^{-1}(0.7317) \\
& z=47^{\circ} \\
& y=180^{\circ}-90^{\circ}-47^{\circ} \\
& y=43^{\circ}
\end{aligned}
$$

Unit 2 Lesson 4: Investigating Obtüse Angles

Introduction to the Activity:

In this activity, you will use your calculator and the following chart to investigate the trigonometric ratios of obtuse angles. Then, you will analyze the results to determine any patterns.

Performing the Activity

1) Refer to the chart that follows. For each of the listed angles, use your calculator to determine the value of each primary trigonometric ratio in the chart.
2) After you have completed the chart, answer the questions that follow.

Round values to 3 decimal places. There will be some rounding error.

	Primary Angle, B	$\boldsymbol{\operatorname { s i n }} \mathrm{B}$	$\cos B$	$\boldsymbol{t a n} B$
	- 5^{0}	$\frac{o p p}{h y p} \approx 0.087$	$\frac{\text { adj }}{\text { hyp }} \approx 0.996$	$\frac{o p p}{a d j} \approx 0.087$
	- 10^{0}	0.174	0.985	0.177
	- 25°	0.423	0.906	0.466
	$\ldots 30^{\circ}$	0.500	0.866	0.577
	$\ldots 9^{\circ}$	1.000	0.017	57.290
	910	1.000	-0.017	-57.290
	- 150°	0.500	-0.866	-0.577
	- 155°	0.423	-0.906	-0.466
	- 170°	0.174	-0.985	-0.177
	- 175°	0.087	-0.996	-0,087

Investigating Obtuse Angles (Continued)

After you have completed the chart, answer the following questions.

1) What do you notice about the signs (positive? negative?) of the values of $\sin B$? Be as specific as possible. Why does this happen?

$$
\begin{aligned}
& \text { as possible. Why does this happen? } \\
& \text { Sin } B \text { is always positive. (O,H are both positive) }
\end{aligned}
$$

2) What do you notice about the signs (positive? negative?) of the values of $\cos \mathrm{B}$? Be as specific as possible. Why does this happen?
A, H both $>0 \rightarrow \cos B$ is positive when B is acute (between 0° and 90°) Aol $H=0 \rightarrow \cos B$ is negative when B is obtuse (between 90° and 180°)
3) What do you notice about the signs (positive? negative?) of the values of $\tan B$? Be as specific as possible. Why does this happen?
O and H both >0 tan B is positive when B is acute,
0 (6) $H<0 \quad \tan B$ is negative when B is obtuse.
4) Write down pairs of $\angle B$ that have approximately the same value for $\sin B$. Verify that the values are actually the same using your calculator. For example, check that sin 5° and $\sin 175^{\circ}$ give the same value. How are the angles related to each other?

$$
\begin{aligned}
& \sin 10^{\circ}=\sin 170^{\circ} \quad \sin 89^{\circ}=\sin 91^{\circ} \\
& \sin 25^{\circ}=\sin 155^{\circ} \quad \text { Sine of Supplementary } \\
& \sin 30^{\circ}=\sin 150^{\circ} \quad \text { are equal. }
\end{aligned}
$$

Using the same pairs of angles, what do you notice about the values of $\cos B$? (Verify on your calculator if needed.)
Cosine of supplementary angles are opposites.
Using the same pairs of angles, what do you notice about the values of \tan B? (Verify on your calculator if needed.)

Tangent of supplementary angles are opposites.
5) Use $\sin ^{-1}$ on your calculator to solve for angle B in $\sin B=0.5$. What value does your calculator give? 30°
What other value for B is possible? $180^{\circ}-30^{\circ}=150^{\circ}$
How can you quickly determine the value of the second angle? 180° - first angle.
Complete the following using a calculator and what you have learned:

$$
\begin{array}{lll}
\sin B=0.7660 & B=50^{\circ} & \text { or } B=180^{\circ}-50^{\circ}=130^{\circ} \\
\sin B=0.9205 & B=67^{\circ} & \text { or } B=180^{\circ}-67^{\circ}=113^{\circ}
\end{array}
$$

Unt ${ }^{2}$ Obtuse. Angles In Standard Postion.
Angles in standard position.

* You will be given an ordered pair
* plot that point on the Cartesian Plane
* join that point to the origin (this line segment is called the terminal arm).
* draw the 'Initial arm' on the positive x-axis beginning at the origin
* θ is measured from the initial arm counter-clockwise to the terminal arm.

To find the primary trig ratios, drop a vertical line segment from the plotted point to the x-axis.
This will form a right triangle.

2.2 Trigonometric Ratios With Obtuse Angles

Practise

1. The terminal arm of an angle, θ, in standard position passes through $\mathrm{A}(2,4)$.
a) Sketch a diagram for this angle in standard position.

b) Determine the length of OA.

$$
\begin{array}{lll}
h / \Delta_{2} & h=2^{2}+4^{2} & \overline{O A}=\sqrt{20}
\end{array}
$$

c) Determine the primary trigonometric ratios to three decimal places.
$\sin \theta=\frac{4}{\sqrt{20}}$
$\cos \theta=\frac{2}{\sqrt{20}}$
$\tan \theta=\frac{4}{2}$
$\doteq 0.894$
$\doteq 0.447$
$=2$
2. The terminal arm of an angle, θ, in standard position passes through $B(-5,6)$.
a) Sketch a diagram for this angle in standard position.

b) Determine the length of OB .

$$
6 \Delta_{5}
$$

$$
\begin{aligned}
|\overline{O B}|^{2} & =5^{2}+6^{2} \\
& =25+36
\end{aligned} \quad||\overrightarrow{O B}|=\sqrt{61}
$$

c) Determine the primary trigonometric ratios to three decimal places.

$$
\begin{aligned}
& \sin \theta=\frac{6}{\sqrt{61}} \quad \cos \theta=\frac{-5}{\sqrt{61}} \quad \tan \theta=-\frac{6}{5}
\end{aligned}
$$

3. Complete the table. For each angle, indicate whether each trigonometric ratio is positive or negative. Round your answers to three decimal places.

Angle	Sine	Cosine	Tangentraty
60°	0.866	0.5	1.732
120°	0.866	-0.5	-1.732
98°	0.990	-0.139	-7.115
145°	0.574	-0.819	-0.700
162°	0.309	-0.951	-0.325

MAP 4CI Trigonometric Ratios for Obtuse Angles in Standard Position \qquad

Unit 2 Lesson 5

1. The sine of an obtuse angle, θ, in standard position is $\frac{3}{5}$.
a) Identify the coordinates of a point that lies on the terminal arm of $\angle \theta$.
$\sin \theta=\frac{3}{5} \leqslant \frac{y}{r}$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+3^{2} & =5^{2} \\
x^{2} & =25-9 \\
x^{2} & =16 \\
x & =\sqrt{16} \\
x & =4
\end{aligned}
$$

c) Determine $\cos \theta$ and $\tan \theta$.

$\cos \theta=\frac{-4}{5} \quad \tan \theta=-\frac{3}{4}$
$\cos \theta=-0.8$
$=-0.75$
b) Sketch a diagram of $\angle \vartheta$.

d) Determine the measure of $\angle \vartheta$, using a calculator.
$\theta=\cos ^{-1}(-0.8)$
$\theta \dot{\theta}=143^{\circ}$
2. The tangent of an obtuse angle, θ, in standard position is -1 .
a) Identify the coordinates of a point that lies on the terminal arm of $\angle 9$.

$$
\tan \theta<0 \text { so } x<0, y>0
$$

$$
\tan \theta=\frac{-1}{1}
$$

$$
\text { So } \frac{y}{x}=\frac{1}{-1}
$$

$$
x=-1, y=1
$$

$$
r=\sqrt{(-1)^{2}+1^{2}}
$$

$$
r=\sqrt{2}
$$

c) Determine $\sin \theta$ and $\cos \theta$. Round your answers to three decimal places.

$$
\begin{aligned}
& \sin \theta=\frac{1}{\sqrt{2}} \quad \cos \theta \\
&=\frac{-1}{\sqrt{2}} \\
&=0.707 \quad=-0.707
\end{aligned}
$$

b) Sketch a diagram of $\angle \vartheta$.

d) Determine the measure of $\angle \vartheta$, using a calculator.

$$
\begin{aligned}
& \theta=\cos ^{-1}(-0.707) \\
& \theta=135^{\circ}
\end{aligned}
$$

MAP
$4 C I$
Unit 2 lesson 6
Sine Law for Oblique Triangles
\rightarrow non right-angled triangles.
General Case

Create two right triangles so we can use trig. ratios.

$$
\begin{aligned}
& \sin A=\frac{0}{H} \\
& \frac{\sin A=\frac{h}{13}}{h}=13 \sin A
\end{aligned}
$$

$$
\text { so, } 13 \sin A=15 \sin B
$$

$$
\sin A=\sin B \quad \begin{aligned}
& \quad \div 13, \div 15 \\
& \text { Cundo th }
\end{aligned}
$$

$$
\frac{\sin A}{\tau_{a}^{15}}=\frac{\sin B}{\tau_{b}^{3}}
$$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}
$$

This can be extended to mclude 0 .
Sine Law $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Unit 2 lesson 6 Sinehaw (contd) pg. 2 :
Ex. 1 Calculate the value of angle A and angle B.

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \text { delate } \\
& \frac{\sin A}{14}=\frac{\sin B}{13}=\frac{\sin 67.4^{\circ}}{15}
\end{aligned}
$$

$$
\frac{\sin A}{14}=\frac{\sin 67.4^{\circ}}{15}
$$

$$
\sin A=\frac{\sin 67.4^{\circ} \times 14}{15}
$$

$$
\sin A=0.8616628
$$

$$
A=\sin ^{-1}(0.8616628)
$$

$$
A=59,50
$$

Ex.2. Determine the length of a to one decimal place.

$$
\begin{aligned}
& \frac{a}{\sin 33^{\circ}}=\frac{7.5}{\sin 98^{\circ}} \\
& a=\frac{7.5 \times \sin 33^{\circ}}{\sin 98^{\circ}} \\
& a=7.5 \times \sin 33^{\circ} \div \sin 98^{\circ} \\
& a=4.1249 \\
& a=4.1 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& B=180^{\circ}-59.5^{\circ}-67^{\circ} 4^{\circ} 59.5^{\circ} \\
& B=53.1^{\circ} \\
& \rightarrow \text { check. } \rightarrow \\
& \frac{\sin B}{13}=\frac{\sin 67.4^{\circ}}{15} \\
& B=\sin ^{-1}\left(\sin 67.4^{\circ} \times 1 / 15\right) \\
& B=53.1^{\circ}
\end{aligned}
$$

APPLICATIONS OF SINE LAW

1. Two people stand approximately 50 m apart on level ground. One person measures the angle of elevation of a hot air balloon to be 58°. The other person measures the angle of elevation to be 41°. How far is each person from the hot air balloon?

$$
\angle B=180^{\circ}-58^{\circ}-41^{\circ}
$$

\therefore the first person is 33.2 m from the balloon the second person is 42.9 m from the balloon.

Unit 2 lesson 8 Cosine Law (for oblique triangles).

To find side a:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

adjust formula accordingly if you are looking for anctherside
For E.g.g q in $\triangle P Q R$

$$
q^{2}=p^{2}+r^{2}-2 p r \cos Q .
$$

To find angle A

$$
\cos A=\frac{\left(b^{2}+c^{2}-a^{2}\right)}{(2 b c)}
$$

(18)

$$
A=\cos ^{-1}\left[\frac{\left(b^{2}+c^{2}-a^{2}\right)}{(2 b c)}\right]
$$

Use Cosine law if you have all 3 sides and you are looking for an angle.

- if you havel 2 sides and the contained angle and you ane looking for third side.

Cosine Law Examples Unit 2 lesson 8 pg (2)
Ex. 1 Detarnunie length of indicated side to the nearest tenth.

(1) Label diagram
(2) Formula:
$c^{2}=a^{2}+b^{2}-2 a b \cos c$
(3) Substitute $\rightarrow y^{2}=8^{2}+15^{2}-2(8)(15) \cos 110$

$$
\begin{cases}y=64+225-(-82.0848344) \\ y^{2}=289+82,0848, \ldots & \uparrow \\ y=\sqrt{371.0848, \ldots} & \text { Meres all } \\ y=19,3 \mathrm{~mm} & \text { dean al places }\end{cases}
$$

(4) Calculate

Ex. 2 Determine measure of indieard angle to nearest degree.
10 cm
c
a
15 cm

(1) Label diagram
(2) Formula:

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{3}-a^{2}}{2 b c} \\
& \angle A=\cos ^{-1}\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)
\end{aligned}
$$

(1)Substatute

$$
\begin{aligned}
\angle A & =\cos ^{-1}\left(\frac{15^{2}+162}{2(15)-10^{2}}\right. \\
& =\cos ^{-1}\left(\frac{225+289-100}{510}\right) \\
& =\cos ^{-1}\left(\frac{414}{510}\right) \\
\Delta & =\cos ^{-1}(0.8176 \ldots) \\
& =35.7 \\
& =36^{\circ}
\end{aligned}
$$

Practice: Pg. 110 , $a, 3,4 a, 5,6,7 a$
\checkmark Answers Pg. 541-542 2,4

Unit 2 Lesson 9: Cosine Law Applications

Review Cosine Law:

The Cosine Law can be used to solve for an unknown side, if you are given two sides and a contained angle: $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos \mathrm{A}$

It can also be re-arranged to solve for an unknown angle:
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Bearings: Direction can be written in several ways

Direction		bearing		Diagram	
N60 ${ }^{\circ} \mathrm{E}$		060° rneasured clockwise from North.			$\xrightarrow{7}$
Diagram	Bearing	Direction	Diagram	Bearing	Direction
	48°	$N 48^{\circ} \mathrm{E}$		$\begin{aligned} & 180^{\circ}+60^{\circ} \\ & 240^{\circ} \end{aligned}$	$560^{\circ} \mathrm{W}$
	$\begin{aligned} & 180^{\circ}-40^{\circ} \\ & 140^{\circ} \end{aligned}$	$S 40^{\circ} \mathrm{E}$		235°	$555^{\circ} \mathrm{W}$

Applications of Cosine Law lesson 9 page 2

1. A harbour master uses radar to monitor two ships. B and C, as they approach the harbour, H . One ship is 5.3 miles from the harbour on a bearing of 032°. The other ship is 7.4 miles away from the harbour on a bearing of 295°. How far apart are the two ships?

2. An aircraft navigator knows that town A is 71 km due north of the airport, town B is 201 km from the airport, and towns A and B are 241 km apart. On what bearing should she plan the course from the airport to town B ?

$$
\begin{aligned}
\cos C & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
\cos C & =\frac{201^{2}+71^{2}-241^{2}}{2(201)(71)} \\
C & =\cos ^{-1}(-12639 \div 28542) \\
C & =\cos ^{-1}(-0.44282) \\
C & =116^{\circ}
\end{aligned}
$$

\therefore the plane should plan the course on a bearing of 116°.
\qquad
Ex. 1 From the top of a vertical cliff a person measures the angle of depression of a boat as 9°. The height of the cliff is 142 m . How far is the boat from the base of the cliff? Round your answer to the nearest m .

$$
\begin{aligned}
& \tan 81^{\circ}=\frac{x}{142} \\
& x=142 \tan 81^{\circ} \\
& x=896.5527 \\
& x=897 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { the boat is about } 897 \mathrm{~m} \text { from the base of } \\
& \text { the cliff. }
\end{aligned}
$$

Ex. 2 Find the length of TU to the nearest tenth.
 In $\triangle R S T$,
$\cos 73^{\circ}=\frac{8}{H}$
$H=\frac{8}{\cos 73^{\circ}}$
$H \doteq 27.362 \mathrm{~cm}$

In $\triangle R T U$
$\therefore T u$ is 16.4 cm

Ex. 3 A smokestack, AB, is 205m high. From two points C and D on the same side of the smokestack's base B, the angles of elevation to the top of the smokestack are 40° and 36° respectively. Find the distance between C and D to the nearest metre.

Ex. 4 Two guy-wires are anchored at the same point. The first guy-wire is 12 m in length and is attached to the top of a tower. The second guy-wire is 9 m in length and is attached to a point 5 m below the top of the tower. How far are the wires anchored from the base of the tower? Round your answer to the nearest tenth of a metre.

Practice Assignment: $\operatorname{Pg} 126 \# 1,2,3,5,7,9,11$

In $\triangle A B C$,
$\angle C=180^{\circ}-114.97^{\circ}$
\therefore the guy
$\angle C=65.03^{\circ}$
$\sin 65.03^{\circ}=\frac{x}{9}$
$x=9 \sin 65.03^{\circ}$
$x=8.15^{\circ}$
$x \neq 8.2$ metres.
wires are
attached 8.2 m
from the base
of the tower.

Unit 2 Lesson 11 part 1: Review

FOR RIGHT ANGLE TRIANGLES

PYTHGOREAN Formula

$$
a^{2}+b^{2}=c^{2} \text { where } \mathrm{c} \text { must be the hypotenuse }
$$

SOHCAHTOA

$$
\sin \theta=\frac{o p p}{h y p}, \cos (\theta)=\frac{a d j}{h y p}, \tan (\theta)=\frac{o p p}{a d j}
$$

FOR OBLIQUE TRIANGLES (non-right angled, including obtuse triangles)

Sine Law

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \text { or } \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Use when you have

- 2 sides and one opposite angle
* need a complete pair.
- 2 angles and one opposite side

Cosine Law

$$
\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos A \text { or } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Use when you have

- 2 sides and a contained angle (find the opposite side)
- All three sides (find an angle)

Obtuse Angles

Obtuse angle - $\quad 90^{\circ} \leq \theta \leq 180^{\circ}$
Supplementary Angles $A+B=180^{\circ}$

$$
\sin A=\sin B, \quad \cos A=-\cos B, \quad \tan A=-\tan B
$$

The primary trigonometric ratios of an angle, θ, in standard position are defined in terms of the coordinates of a point, (x, y), on the terminal arm, as follows:
$\sin \theta=\frac{y}{r} \quad \cos \theta=\frac{\mathrm{x}}{\mathrm{r}} \quad \tan \theta=\frac{\mathrm{y}}{\mathrm{x}} \quad$ where $\mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$

Bearing and Directions

Bearings-050 , Directions $-N 50^{\circ} E$

Types of Problems

Directions,

Solve a Triangle
Area

Practice Drawing Triangles.

Draw the following triangles, state unknowns and approach to solving:

1. Triangle $A B C$, where $a=8 \mathrm{~m}, b=4 \mathrm{~m}, A=90^{\circ}$
2. Triangle $X Y Z$, where $X=108^{\circ}, z=27 \mathrm{~mm}, y=12 \mathrm{~mm}$.
3. Triangle $P Q R$, where $P=43^{\circ}, R=118^{\circ}, q=50 \mathrm{~m}$.

$$
\begin{aligned}
& \angle Q=19^{\circ} \\
& \frac{r}{\sin 118^{\circ}}=\frac{50}{\sin 19^{\circ}} \quad \frac{\beta}{\sin 43^{\circ}}=\frac{50}{\sin 119} \\
& r=135.6 \mathrm{~m} \quad \quad F=104.7 \mathrm{~m}
\end{aligned}
$$

Example \#1: Calculate the length of the unknown side in each triangle.

Example \#2 : Calculate the indicated angle in each triangle. $\quad l=\frac{3 \sin 120^{\circ}}{\sin 20^{\circ}}$ $\frac{\sin B}{5.5}=\frac{\sin 63^{\circ}}{9}$ a. sine law

4.0 cm

Example \#3

A boat is proceeding on a bearing of 045° at $12 \mathrm{~km} / \mathrm{hr}$. At 3:00PM the captain sees a navigation buoy at 020°. He sights the same buoy at 230° at $4: 15$. How many km's is the boat from the buoy at 4:15PM?
a. Draw the figure

$$
1.25 \times 12=15
$$

b. Determine what Trig Rules to use sine law
c. Solve for unknown.

$$
\begin{aligned}
& \angle N=180^{\circ}-25^{\circ}-5^{\circ} \\
& \angle N=150^{\circ}, n=15 \\
& \frac{x}{\sin 25^{\circ}}=\frac{15}{\sin 150^{\circ}} \quad x=25^{\circ} \\
& \sin 155^{\circ}
\end{aligned}
$$

