\qquad

UNIT 3 TEST
[9] 1. For each relation below, state whether it is a function and its domain and range.
a) $\{(1,9),(2,7),(3,5),(4,3)\}$
b)

Function (YN): Yes
Domain: $\{x \in \mathbb{R}\}$
Range: $\{y \in R \mid y>1\}$
c)

Function (Y) No
Domain: $\{x \in \mathbb{R} \mid-2 \leq x \leq 2\}$
Range: $\{y \in \mathbb{R} \mid-2 \leq y \leq 2\}$
[5] 2. If $f(x)=3-2 x$, find:
a) $f(1)$
b) $f(3 a-1)$

$$
\begin{aligned}
f(1) & =3-2(1) \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
f(3 a-1) & =3-2(3 a-1) \\
& =3-6 a+2 \\
& =5-6 a
\end{aligned}
$$

c) 8 when $f(x)=-7$

$$
\begin{aligned}
-7 & =3-2 x \\
-10 & =-2 x \\
x & =5
\end{aligned}
$$

[4] 3. For each function below, find its inverse $f^{-1}(x)$. Show your work.
a) $f(x)=\frac{2 x-5}{7} \quad y=\frac{2 x-5}{7}$
for f^{-1},
$\frac{2 y-5}{7}=x$
$2 y-5=7 x$
$2 y=7 x+5$

$$
y=\frac{7}{2} x+\frac{5}{2}
$$

$$
\therefore f^{-1}=\frac{7}{2} x+\frac{5}{2}
$$

b) $f(x)=1+\sqrt{x+2} \quad$ note:

$$
y=1+\sqrt{x+2}, \frac{x}{x} \geqslant-2
$$

for f^{-1},

$$
\begin{aligned}
1+\sqrt{y+2} & =x \\
\sqrt{y+2} & =x-1 \\
y+2 & =(x-1)^{2} \\
y & =(x-1)^{2}-2
\end{aligned}
$$

for $x \geqslant-2$

$$
\therefore f^{-1}=(x-1)^{2}-2, x \geqslant-2 .
$$

[4] 4. Sketch the inverses of the following functions on the same grids they are drawn.

b)

[10] 5. Given $f(x)=\sqrt{x}-3$,
a) Write equations for:
b) Sketch all three graphs on the same set of axes.

$$
\begin{aligned}
& -f(x)=-(\sqrt{x}-3)=-\sqrt{x}+3 \\
& f(-x)=\sqrt{-x}-3
\end{aligned}
$$

c) Determine any points that are invariant for each reflection.

$$
\begin{array}{r}
\sqrt{x}-3=0 \\
\sqrt{x}=3 \\
x=9 \\
\\
\sqrt{0}-3 \\
=-3
\end{array}
$$

$$
\begin{aligned}
& \text { invariant for each reflection. } \\
& -\overrightarrow{f(x)}: \frac{\text { in variant points when } y=0}{(9,0)} \\
& \rightarrow \text { invariant points when } x=0
\end{aligned}
$$

$$
f(-x):(0,-3)
$$

[5] 7. The graph of $f(x)=\sqrt{x}$ is stretched vertically by factor 3 , reflected in the y-axis, and then
translated 2 units down.
$y=3 f(-x)-2 \leftarrow$ description
b) Write the equation of the new function each individual transformation.
a) Sketch the graph of the base curve and
Label your final curve.

$$
\begin{aligned}
& y=3 f t- \\
& y=3 \sqrt{-x}-2
\end{aligned}
$$

function notation...
you were
You asked for this in this question.
[10] 8. a) List the transformations, in the order you would apply them for the graph of $y=f(x)$ to the graph of $y=-2 f(2(x-4))+3$.
(1) reflect in x-axis
(2) Vertical stretch factor 2
(3) horizonal compression factor $\frac{1}{2}$ (4) Shift right 4 (5) shift up 3 .
b) Start with the graph of the base curve, $f(x)=x^{2}$ provided and sketch each individual. transformation. Label your final curve.

[5] 9. A manufacturing company produces garage doors. The number of garage doors, g, produced per week is related to the number of hours of labour, h, required per week to produce them by the function $g(h)=1.8 \sqrt{h}$.
a) How many doors can be produced per week using 500 hours of labour?

$$
\begin{gathered}
n=500, \quad g(500)=? \\
g(500)=1.8 \sqrt{500} \\
=
\end{gathered}
$$

b) Determine the inverse of the function.

$$
\begin{array}{rlrl}
& \text { b) } & \text { Determine the inverse of the function. } \\
= & \frac{9}{10}=1,8 \sqrt{h} \\
= & \frac{9}{5}
\end{array} \quad \begin{aligned}
(\sqrt{h})^{2} & =\left(\frac{5 g}{9}\right)^{2} \\
9 & \frac{9}{5}
\end{aligned} \quad \begin{aligned}
1.8 & =\sqrt{h} \\
h & =\frac{25 g^{2}}{81}
\end{aligned}
$$

c) Explain its meaning (ie. what it can be used to calculate).

If the company needs to produce a
certain number of garage doors, this formula will determine the number of hours of labour that are required.
d) How many hours of labour are needed each week to keep production at or above 25 doors a week?

$$
\begin{aligned}
h & =\frac{25(25)^{2}}{81} \\
& =\frac{15625}{81} \\
& =192.9
\end{aligned}
$$

BONUS
[2] 10. Consider the exponential function $f(x)=2^{x}$.
a) What point is invariant when it is reflected in the y-axis?

- function will be invariant for points on the axis of symmetry $f(0)=2^{\circ} \quad \therefore(0,1)$ is the invarient.
b) What is the equation of the horizontal asymptote of the transformed function $y=f(x)-5$?

$$
y=-5
$$

[1] 11. Write the equation of a function that is its own inverse.

$$
y=-x \quad, \quad y=x, \quad y=\frac{1}{x}
$$

