Exponential Growth

- 1. Solve each exponential equation. Express answers to the nearest hundredth of a unit.
 - a. $A = 250(1.05)^{10}$
 - b. $P = 7500(1.067)^{15}$
 - c. $500 = N_0 (1.25)^{1.25}$
 - d. 84,000 = a (1.005)²⁸
- 2. The growth in population of a small town since 2000 is given by the function $P(n)= 1250(1.03)^n$
 - a. What is the initial population?
 - b. What is the growth rate?
 - c. Determine the population in 2011?
 - d. In which year does the population reach 2000 people?
- 3. In 1990, a sum of \$1,000 is invested at a rate of 6% per year for 15 years.
 - a. What is the growth rate?
 - b. What is the initial amount?
 - c. How many growth periods are there?
 - d. Write an equation that models the growth of the investment, and use it to determine the value of the investment after 15 years.
- 4. A species of bacteria has a population of 500 at noon. It doubles every 10 hours. The function that

models the growth of the population **P** at any hour **t** is $P(t) = 500(2^{\overline{10}})$

- a. Why is the exponent $\frac{t}{10}$
- b. Why is the base 2? What is the rate of growth?
- c. Why is 'a' value 500?
- d. Determine the population at midnight.
- e. Determine the population at noon the next day.
- f. Determine the time at which the population first exceeds 2000?
- 5. A town with a population of 12,000 has been growing at an average rate of 2.5%.
 - a. Write an equation that models the population of the town.
 - b. Determine the population of the town in 10 years.
 - c. Determine the number of years until the population doubles.
 - d. Determine what the population was 8 years ago.
- 6. A population of yeast cells can double in as little as 1 hour. Assume an initial population of 80 cells.
 - a. What is the growth rate, in percent per hour, of this colony of yeast cells?
 - b. Write an equation that can be used to determine the population of cells in t hours.
 - c. Use your equation to determine the population after 6 hours.
 - d. Use your equation to determine the population after 90 minutes.
 - e. Approximately how many hours would it take for the population to reach 1 million cells?
 - f. What are the domain and range for this situation?
- 7. A town has a population of 8400 in 1990. Fifteen years later, its population grew to 12500. Determine the average annual growth rate of this town's population.
- 8. A collector's hockey card is purchased in 1990 for \$5. The value increases by 6% every year.
 - a. Write an equation that models the value of the card, given the number of years since 1990.
 - b. Determine the value of the card in the 20th year after it was purchased.

Exponential Decay

- 1. Solve each exponential equation. Express answers to the nearest hundredth of a unit.
 - a. $A = 2505(0.85)^{10}$
 - b. $P = 7500(0.67)^4$
 - c. $500 = N_0 (0.75)^{11}$
- 2. The population of a small town since 2000 is given by the function $P(n)= 1250(0.94)^n$
 - a. What is the initial population?
 - b. What is the decay rate?
 - c. Determine the population in 2011?
 - d. In which year does the population reach 385 people?
- 3. Which of these functions describe exponential decay? Explain.
 - a. $g(x) = -4 (3)^{x}$
 - b. $f(x) = 0.8 (0.75)^{2x}$
 - c. $P = 7500(0.067)^4$
 - d. $500 = N_0 (1.05)^{11}$
- 4. A computer loses it value each month after it is purchased. Its purchase price was \$1,900 and it loses 4.5% of its value after each month.
 - a. Write an equation that models the value of the computer as a function of time, in months.
 - b. Determine the value of the computer after 3 months.
 - c. Determine the value of the computer after 2 years.
 - d. Determine the time at which the value of the computer drops under \$400.
- 5. A student records the internal temperature of a hot sandwich that has been left to cool on a kitchen counter. The room temperature is 19°C. An equation that models this situation
 - is $T(t) = 63(0.5)^{\overline{10}} + 19$, where *T* is the temperature in degrees Celsius and *t* is the time in minutes.
 - a. What is the temperature of the sandwich when she began to record its temperature?
 - b. Determine the temperature, to the nearest degree, of the sandwich after 20 min.
 - c. How much time did it take for the sandwich to reach an internal temperature of 30°C?
- 6. In each case, write an equation that models the situation described. Explain what each part of each equation represents.
 - a. The percent of colour left if blue jeans lose 1% of their colour every time they are washed?
 - b. The population if a town had 2500 residents in 1990 and grew at a rate of 0.5% each year after that for *t* years.
 - c. The population of a colony if a single bacterium takes 1 day to divide into two; the population is **P** after **t** days.
- 7. A town has a population of 8400 in 1990. Eighteen years later, its population was 4850. Determine the average annual decay rate of this town's population.

APPLICATION PROBLEMS - ANSWERS

EXPONENTIAL GROWTH SOLUTIONS											
1.	a) 407.22 b) 19,839.36	2.	a) 1250 people b) 3%	3.	a) 6% b) \$1000	4.	a) takes 10 hours to double b) 2 b/c it is doubling growth rate is 100%				
	c) 378.30 d) 73, 051.57		c) 1730 people d) 16 years		c) 15 d) A = 1000(1.06)^15 A = \$2396.56		c) initial pop is 500 d) 1149 bacteria e) 2639 bacteria f) 20 hours				
5.	a) P(t)=12000(1.025)^t b) 15,361 people c) 28 years d) 9849 people	6.	a) 100% b) P(t) = 80(2)^t c) 5210 cells d) P(1.5) = 226 cells e) 14 hours	7.	2.70%	8.	a) V(t)=5(1.06)^t b) \$16				

EXPC	NENTIAL DECAY SOL	UTIONS									
1.a.	493.17	2.a.	1250	3.b&c	Bases between zero and one	4.a.	V(t) = 1900(0.955) ^t				
b.	1511.33	b.	6%			b.	V(3)=1655				
C.	11838.48	C.	633			с.	V(24)=629				
		d.	2019			d.	34 months				
5.a.	82°C	6.a.	C = 100(0.99) ^w	100 is the % of colour at the beginning, 99 refers to the fact							
b.	34.75°C		that 1% is lost during every wash, & w refers to the # washes								
C.	25 minutes	b.	P=2500(1.005) ^t	2500 is the initial population, 1.005 refers to the fact that the							
				population grows 0.5% every year, t refers to the number of years after 1990							
		c.	$P = 1(2)^{t}$	2 refers to the fact that the population doubles in one day							
				t refers to the number of days							

7. 3%