
MCR3UI - Unit 5 Day 7

Review Practice Questions

- 1. (a) Graph the function $y = 27 \left(\frac{1}{3}\right)^x$.
 - (b) Identify the
 - (i) domain
 - (ii) range
 - (iii) x- and y- intercepts
 - (iv) intervals of increase/decrease
 - (v) equation of the asymptote
- 2. Determine the equation for the exponential graph shown.

- 3. (a) Sketch the function $y = 2^{x-3} + 4$
 - (b) identify the
 - (i) domain
 - (ii) range
 - (iii) equation of the asymptote
- 4. Describe the transformations that map the base function $y = 5^x$ onto each of the given functions and then graph each function using transformations.
 - (a) $y = 2(5^x)$
 - (b) $y = 5^{2x}$
 - (c) $y = -5^{-x}$
 - (d) $y = 5^{-5x-10}$

Number of Bounces, n	Height, h (cm)
0	100
1	76
2	57
3	43
4	32
5	24

5. The height, h, in centimetres, of a bouncing ball after n bounces is given.

- (a) Calculate the first and second differences and describe the trend.
- (b) Make a scatter plot of height versus number of bounces. Describe the shape of the curve.
- (c) Write the equation of the curve of best fit. Justify your choice.
- (d) Will the ball ever stop bouncing? Discuss this with respect to
 - (i) the mathematical model
 - (ii) the real situation
- (e) Why might your answers in part (d) differ?