MCR 3UI

Name: ____

UNIT 3 TEST: Transformations of Functions

- [5] 1. For each statement below, circle T if the statement is true, or F if the statement is false.
 - T F a) When the function $f(x) = x^2$ is transformed to y = -f(x), there is one inversiont point
 - invariant point. 2(x-3)T \bigcirc b) For the function y = -f(2x-6), there is a horizontal translation right 6 units.
 - F c) An asymptote is a line that a curve approaches, but never touches.
 - F d) A vertical line is a relation, but not a function.
 - (E) e) Horizontal and vertical translations are always completed first when applying transformations to any function.
- 2. For each relation below, determine whether it is a function and state its domain and range.

[4] 4. Sketch the inverses of the following functions on the same grids they are drawn.

For each function below, find its inverse, $f^{-1}(x)$. Identify if the inverse is a function or not. Show your work.

d) State the domain and range for the reflected functions.

[4]

7.

[11]

[6] 5.

Given a point (-4, 6) that lies on the graph of y = f(x), determine its new co-ordinates as you apply each of the following transformations.

y = f(x)	y = f(2x)	y = f(-2x)	y = 3f(-2x)	y = 3f(-2(x+1))
(-4, 6)	(-2,6) x × ½	(2,6)	(2,18) (2,18)	(1.18) ×-1

8. The graph of $g(x) = x^3$ is reflected in the x-axis, compressed vertically by a factor of $\frac{1}{4}$ then translated left 4 units and up 7 units. [2] What is the equation of the new image (the transformed function)? $y = -\frac{1}{4}(x+4)^3 + 7$ (2) mark each 1111 Given $h(x) = \frac{1}{x-2} + 3$, 9. [6] a) List the transformations that have been applied to the reciprocal function to obtain y = h(x). (4=5) 4=3 Hightaups. ve b) Graph the base function and $h(x) = \frac{1}{r-2} + 3$ 4=0+5+4 on the grid provided. c) State the equations of the asymptotes for h(x): Horizontal Asymptote: $\chi = 2$ v Vertical Asymptote: 4=3.7O Consider $f(x) = \sqrt{x}$. 10. a) List the transformations in the order you would apply them to the function $f(x) = \sqrt{x}$ [9] to graph $y = f(-\frac{1}{2}(x-1)) - 3$. 1. reflection in y-axis 12. horizontal stretch factor 2) 0 3. shift right 1 14. shift down 3. y-3 b) Graph the original image $f(x) = \sqrt{x}$ and the transformed image. Show all work/graphs for full marks. Label the original function and the final graph. c) Write the equation for the transformed function. $y = \sqrt{-\frac{1}{2}(\chi - 1)} - 3$ d) State the domain and range of $y = f(-\frac{1}{2}(x-1)) - 3$ $D: \{ \underline{x \in \mathbb{R} \mid x \in I} \}$ R: { _____

. 61 11.

Given f(x) = x, $g(x) = x^2$, $h(x) = \sqrt{x}$ Write the simplified equation of the following transformations а

b)
$$y = \frac{2}{3}f(x-1)$$

 $y = \frac{2}{3}(x-1)$
 $y = \frac{2}{3}(x-1)$
 $y = \frac{2}{3}(x-1)$
 $y = (-\frac{1}{4}x)^2 - 5$
 $y = 6\sqrt{x} + 2$
 $y = 6\sqrt{x} + 2$
 $y = 6\sqrt{x} + 2$
 $y = \frac{1}{4}x^2 - 5$

- 12.
- A catering company charges \$250, plus a variable rate of \$20/person for any event they are hired to cater.
 - a) Write a function to represent the total cost of hiring the catering company, c(p)dollars, in terms of the number of people, p, that will be attending a catered event.

b) Determine the domain of the function. $D = 2 p \in W | p^{3} \cdot O^{2} \cdot V$

c) If we were to find the inverse of the function, what would it represent in the context of this relationship? The number of people as a function of cast of the banquet.

X

BONUS:

Determine the equation of the graph given below.

20p = C - 250 $p = \frac{C - 250}{20}$

