\qquad

UNIT 3 TEST: Transformations of Functions

[5] 1. For each statement below, circle T if the statement is true, or F if the statement is false.
(T) F a) When the function $f(x)=x^{2}$ is transformed to $y=-f(x)$, there is one invariant point. $\quad 2(x-3)$
b) For the function $y=-f(2 x-6)$, there is a horizontal translation right 6 units.
c) An asymptote is a line that a curve approaches, but never touches.
d) A vertical line is a relation, but not a function.
e) Horizontal and verticaltranslations are always completed first when applying transformations to any function.
2. For each relation below, determine whether it is a function and state its domain and range.
a) $\{(-5,2),(-3,3),(-1,4),(1,5)\}$

b)

c)

Function? (circle) Yes/NO

[5]
3. If $f(x)=\sqrt{-x+7}$, find:
a) $f(3)$
b) $f(1-a)$
c) x when $f(x)=4$
$f(3)=\sqrt{-3+7}$
$=\sqrt{4}$
$=2$
$f(1-a)=\sqrt{-(1-a)+7}$
$=\sqrt{-1+a+7}$
$=\sqrt{a+b}$

$$
\begin{aligned}
\sqrt{x+7} & =4 \\
-x+7 & =16 \\
-x & =9 \\
x & =-9
\end{aligned}
$$

[4] 4. Sketch the inverses of the following functions on the same grids they are drawn.
a)

b)

[6] 5. For each function below, find its inverse, $f^{-1}(x)$. Identify if the inverse is a function or not. Show your work.
a) $f(x)=\frac{4 x-3}{9}$
b) $f(x)=(x+2)^{2}-5$

$$
\begin{aligned}
& \text { for } f^{-1} \\
& x=\frac{4 y-3}{9}
\end{aligned}
$$

$$
9 x=4 y-3
$$

$$
\begin{aligned}
& \text { for } f=1 \\
& x=(y+2)^{2}-5 \\
& x+5=(y+2)^{2}
\end{aligned}
$$

$$
9 x+3=4 y
$$

$$
\pm \sqrt{x+5}=y+2
$$

$$
\begin{gathered}
y=\frac{\frac{x+3}{4}}{\therefore f^{-1}(x)=\frac{9 x+3}{4}}
\end{gathered}
$$

$$
y= \pm \sqrt{x+5}-2
$$

$$
\therefore f^{-1}(x)= \pm \sqrt{x+5}-2
$$

Function $(Y / N): y \in S$.
6. Given the graptof $f(x)=(x-3)^{2}$,
a) Write equations for:

$$
\begin{aligned}
& -f(x)=-(x-3)^{2} \\
& f(-x)=(-x-3)^{2} \text { of }(x+3)^{2}
\end{aligned}
$$

b) Sketch the graphs of $y=f(x), y=-f(x)$ and $y=f(-x)$ on the same set of axes. Label each function.
c) Determine any points that are invariant for each reflection.
$-f(x):$ \square $f(-x):(0,9)$

d) State the domain and range for the reflected functions.
$-f(x)$
$f(-x):$
D: $\{x \in \mathbb{R}\}$
$\mathrm{D}:\{\quad x \in \mathbb{R}\}$
$R:\{y \in \mathbb{R} \mid y \leq 0\}$
$R:\{y \in R \mid y>0\}$
7. Given a point $(-4,6)$ that lies on the graph of $y=f(x)$, determine its new co-ordinates as you apply each of the following transformations.

$y=f(x)$	$y=f(2 x)$	$y=f(-2 x)$	$y=3 f(-2 x)$	$y=3 f(-2(x+1))$
$(-4,6)$	$(-2,6)^{x \times \frac{1}{2}}$	$(2,6)^{x-1}$	$(2,18)^{x+1}$	$(1.18)^{x-1}$

8. The graph of $g(x)=x^{3}$ is reflected in the x -axis, compressed vertically by a factor of $1 / 4$
[2] What is the equation of the new image (the transformed function)?

$$
y=-\frac{4}{4}(x+4)^{3}+7
$$

9. Given $h(x)=\frac{1}{x-2}+3$,
a) List the transformations that have been applied to the reciprocal function to obtain $y=h(x)$,

$$
\text { right a up 3. } \vee
$$

b) Graph the base function and $h(x)=\frac{1}{x-2}+3$ on the grid provided.

10. Consider $f(x)=\sqrt{x}$.
c) State the equations of the asymptotes for $h(x)$:

Horizontal Asymptote: \qquad Vertical Asymptote: \qquad \sqrt{N}
a) List the transformations in the
to graph $y=f\left(-\frac{1}{2}(x-1)\right)-3$.

1. reflection in y-axis
(2. horizontal stretch factor $\int^{x *-2} 0$
2. shift right
3. shift down 3
b) Graph the original image $f(x)=\sqrt{x}$ and the transformed image. Show all work/graphs for full marks. Label the original function and the final graph.
c) Write the equation for the transf

$$
y=\sqrt{-\frac{1}{2}(x-1)}-3
$$ formed function.

d) State the domain and range of $y=f\left(-\frac{1}{2}(x-1)\right)-3$

D: $\{x \in \mathbb{R} \mid x \leq 1,<\}$

11. Given $f(x)=x, g(x)=x^{2}, h(x)=\sqrt{x}$

12. A catering company charges $\$ 250$, plus a variable rate of $\$ 20$ /person for any event they are hired to cater.
a) Write a function to represent the total cost of hiring the catering company, $c(p)$ dollars, in terms of the number of people, p, that will be attending a catered event.

$$
C(p)=250+20 p
$$

b) Determine the domain of the function.

$$
\left.D=\sum p \in W \mid p \geqslant 0\right\}
$$

c) If we were to find the inverse of the function, what would it represent in the context of this relationship?

BONUS:
Determine the equation of the graph given below.

Equation:

Essential Skills Checklist

\square Determine whether a relation is a function or not
\square Determine domain and range of functions \square Interpret and Apply Function Notation
\square Identify and interpret transformations of functions - graphically
\square Identify and interpret transformations of functions - algebraically
\square Graph transformations of basic functions
\square Find the inverse of a function - graphically
\square Find the inverse of a function - algebraically

