1. Circle the number of the transformation in function notation (see below) that matches the description of the transformations (a) - (e).

a) \(f(x) \) translated right 3
b) \(f(x) \) translated up 3
c) \(f(x) \) translated down 3 and right 2
d) \(f(x) \) translated down 3 and left 2
e) \(f(x) \) reflected in the y-axis
f) \(f(x) \) reflected in the x-axis

1. \(y = f(-x) \) 2. \(y = -f(x) \) 3. \(y = f(x - 3) \) 4. \(y = f(x + 3) \)
5. \(y = f(x) + 3 \) 6. \(y = f(x - 2) - 3 \) 7. \(y = f(x + 2) - 3 \) 8. \(y = f(x - 3) - 2 \)

2. State whether each relation below represents a function. Explain your reasoning. (Vertical line test is ONLY a valid reason if you provide a graph) Also, determine the domain and range for each relation.

a) \(\{(1, 2), (2, 3), (2, -1), (4, -1)\} \)

- Is a function
- Is not a function
Reasoning:

b) \(y = x \)

- Is a function
- Is not a function
Reasoning:

c) \(x = -5 \)

- Is a function
- Is not a function
Reasoning:

d) \(y = 7 \)

- Is a function
- Is not a function
Reasoning:

e) \(x^2 + y^2 = 49 \)

- Is a function
- Is not a function
Reasoning:

e) \(y = (x + 3)^2 + 4 \)

- Is a function
- Is not a function
Reasoning:

f) \(f(x) = \sqrt{x + 1} \)

- Is a function
- Is not a function
Reasoning:

3. Given \(f(x) = 5 - 4x \), find

a) \(f(2) \)

b) \(-f(3)\)

c) \(x \) when \(f(x) = 10 \)
4. Let \(f(x) = \sqrt{x+1} \)
 a) Determine the new image equation if \(y = f(x+2) - 4 \).

 b) Sketch a graph of \(f(x) = \sqrt{x+1} \) and \(y = f(x+2) - 4 \) on the same grid.
 Label each curve.

 c) State the domain and range of the original image, \(f(x) = \sqrt{x+1} \) and the transformed image, \(y = f(x+2) - 4 \).

 Original Image
 \[
 \begin{align*}
 \text{D: } & \{ \text{________________} \} \\
 \text{R: } & \{ \text{________________} \}
 \end{align*}
 \]

 Transformed Image
 \[
 \begin{align*}
 \text{D: } & \{ \text{___________} \} \\
 \text{R: } & \{ \text{___________} \}
 \end{align*}
 \]

 d) If the original image, \(f(x) = \sqrt{x+1} \) was transformed to \(y = f(-x) \) state its new domain and range.
 \[
 \begin{align*}
 \text{D: } & \{ \text{________________} \} \\
 \text{R: } & \{ \text{________________} \}
 \end{align*}
 \]

5. If \(f(x) = \frac{1}{x-2} + 5 \), state the domain, range and the equations of the asymptotes.

 Vertical Asymptote: \(\text{___________} \)
 Horizontal Asymptote: \(\text{___________} \)

 \[
 \begin{align*}
 \text{D: } & \{ \text{________________} \} \\
 \text{R: } & \{ \text{________________} \}
 \end{align*}
 \]