1. Circle the number of the transformation in function notation (see below) that matches the description of the transformations (a) - (e).

 a) \(f(x) \) translated right 3
 b) \(f(x) \) translated up 3
 c) \(f(x) \) translated down 3 and right 2
 d) \(f(x) \) translated down 3 and left 2
 e) \(f(x) \) reflected in the y-axis
 f) \(f(x) \) reflected in the x-axis

 1. \(y = f(-x) \) 2. \(y = -f(x) \) 3. \(y = f(x - 3) \) 4. \(y = f(x + 3) \)
 5. \(y = f(x) + 3 \) 6. \(y = f(x - 2) - 3 \) 7. \(y = f(x + 2) - 3 \) 8. \(y = f(x - 3) - 2 \)

2. State whether each relation below represents a function. Explain your reasoning.
 Also, determine the domain and range for each relation.

 a) \(\{(1, 2), (2, 3), (2, -1), (4, -1)\} \)
 - Is a function
 - Is not a function
 Reasoning: Two points have the same x-value with different y-values.

 \[D = 2 \times 2 = 4 \]
 \[R = \{2, 3, -1\} \]

 b) \(y = x \)
 - Is a function
 Reasoning: A line with slope 1 is a function.

 \[D = \{x \in \mathbb{R}\} \]
 \[R = \{y \in \mathbb{R}\} \]

 c) \(x = -5 \)
 - Is not a function
 - Is not a function
 Reasoning: A vertical line is not a function.

 \[D = \{x \in \mathbb{R}\} \]
 \[R = \{y \in \mathbb{R}\} \]

 d) \(x^2 + y^2 = 49 \)
 - Is a function
 - Is not a function
 Reasoning: There are points where the same y-value has more than 1 x-value.

 \[D = \{x \in \mathbb{R}| -7 \leq x \leq 7\} \]
 \[R = \{y \in \mathbb{R}| -7 \leq y \leq 7\} \]

 e) \(y = (x + 3)^2 + 4 \)
 - Is a function
 - Is not a function
 Reasoning: A quadratic is a function.

 \[D = \{x \in \mathbb{R}\} \]
 \[R = \{y \in \mathbb{R}| y \geq 4\} \]

 f) \(f(x) = \sqrt{x + 1} - x + 1 \)
 - Is a function
 - Is not a function
 Reasoning: A root function is a function.

 \[D = \{x \in \mathbb{R}| x \geq -1\} \]
 \[R = \{y \in \mathbb{R}| y \geq 0\} \]

3. Given \(f(x) = 5 - 4x \), find

 a) \(f(2) \)
 \[f(2) = 5 - 4(2) \]
 \[= 5 - 8 \]
 \[= -3 \]

 b) \(f(-3) \)
 \[= -((5 - 4(-3)) \]
 \[= -((5 - 12) \]
 \[= -(-7) \]
 \[= 7 \]

 c) \(x \) when \(f(x) = 10 \)
 \[5 - 4x = 10 \]
 \[-4x = 5 \]
 \[x = -\frac{5}{4} \]
4. Let \(f(x) = \sqrt{x+1} \) if \(x \geq -1 \)

a) Determine the new image equation if \(y = f(x+2) - 4 \).
\[
\begin{align*}
y &= \sqrt{(x+1)+2} - 4 \\
y &= \sqrt{x+3} - 4
\end{align*}
\]

b) Sketch a graph of \(f(x) = \sqrt{x+1} \) and \(y = f(x+2) - 4 \) on the same grid.
Label each curve.

\[y = \sqrt{x+1} \]
\[y = f(x) \]
\[y = f(x+2) - 4 \]

\[y = \sqrt{x+3} - 4 \]

\[\text{Original Image} \]
\[D: \{ x \in \mathbb{R} \mid x \geq -1 \} \]
\[R: \{ y \in \mathbb{R} \mid y \geq 0 \} \]

\[\text{Transformed Image} \]
\[D: \{ x \in \mathbb{R} \mid x \geq -3 \} \]
\[R: \{ y \in \mathbb{R} \mid y \geq -4 \} \]

d) If the original image, \(f(x) = \sqrt{x+1} \) was transformed to \(y = f(-x) \) state its new domain and range.
\[D: \{ x \in \mathbb{R} \mid x \leq 1 \} \]
\[R: \{ y \in \mathbb{R} \mid y \geq 0 \} \]

5. If \(f(x) = \frac{1}{x-2} + 5 \), state the domain, range and the equations of the asymptotes.

Vertical Asymptote: \(x = 2 \)

Horizontal Asymptote: \(y = 5 \)

\[D: \{ x \in \mathbb{R} \mid x \neq 2 \} \]
\[R: \{ y \in \mathbb{R} \mid y \neq 5 \} \]

Note: This is \(y = \frac{1}{x} \) shifted right 2, up 5