J7D7 MCR 3UI SEQUENCES AND SERIES
Pascal's Triangle and Binomial Theorem
'reamble A binomial is an algebraic expression :ontaining two terms.

$$
\text { x. } \quad 3 x+1, \quad 1-x^{2}, \quad 3 x-7 y
$$

-oday we will learn how to expand binomials raised to my power without the use of tedious and lengthy :alculations.

$$
\begin{array}{ll}
\text { :x. } & (x-3)^{2}=(x-3)(x-3)=x^{2}-6 x+9 \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (3 x-2 y)^{10}=
\end{array}
$$

'art A Expand and simplify the following. Place your inal answer below.
eeep in mind that $(x+y)^{n}=(x+y)(x+y)^{n-1}$, in)ther words you may use your previous answer to sroceed.

$$
\begin{aligned}
& (x+y)^{0}=1 \\
& (x+y)^{1}=x+y \\
& (x+y)^{2}=x^{2}+2 x y+y^{2}
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
(x+y)^{3}= & (x+y)(x+y)^{2}=x^{3}+2 x^{2} y+x y^{2} \\
+x^{2} y+2 x y^{2}+y^{3}
\end{array}\right] \begin{array}{rl}
& =x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{array}\right\}
$$

'art B List all of the patterns you see in the final answers in the expansions. (done the long way). If n is the exponent on $(x+y)$,

1. x exponents pattern: $n, n-1, n-2, \ldots, 1,0$
2. y exponents pattern: $0,1,2, \ldots, n-1, n$
3. the sum of the exponents in each term is n.
4. the first and last term have a coefficient 1
5. the second ' ε second last term have a coefficient n
6. there are $n+1$ terms in the expansion.
'art C Write the coefficients of the expansions below centering each row in the space. Then add the coefficients in each row.

This is Pascal's Triangle.

Part D List some of the characteristics of the numbers in Pascal's triangle.

1. The sum in any row is 2^{n}
2. Each row begins and ends with a one
3. To find any entry add the two entries above.
4. It is symmetric
\rightarrow linear
\rightarrow quad.
Part E Using Pascal's triangle and the patterns you have discovered today, expand :

$$
\begin{aligned}
(x+y)^{8}= & x^{8}+8 x^{7} y+28 x^{6} y^{2}+56 x^{5} y^{3}+70 x^{4} y^{4} \\
& +56 x^{3} y^{5}+28 x^{2} y^{6}+8 x y^{7}+y^{8} \\
\text { From } \Delta, & 18285670562881
\end{aligned}
$$

Part F How is the expansion of $(x-y)^{2}$ different

$$
\begin{aligned}
& \text { from }(x+y)^{2} ? \\
& (x-y)^{2}=x^{2}-2 x y+y^{2}
\end{aligned}
$$

Part G Expand the following. Recall: $(x+y)^{3}=$

$$
\begin{aligned}
& (x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3} \\
& =[x+(-y)]^{3}=x^{3}+3 x^{2}(-y)+3(x)(\underbrace{(-y)^{2}}_{+}+(-y)^{3} \\
& (x-y)^{4}= \\
& 14641 \\
& (x)-y)^{5}=x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5} \\
& 15101051
\end{aligned}
$$

$$
\begin{aligned}
&(2 x)+3)^{5}=(2 x)^{5}+5(2 x)^{4}(3)+10(2 x)^{3}(3)^{2} \\
&+10(2 x)^{2}(3)^{3}+5(2 x)(3)^{4}+(3)^{5} \\
&= 32 x^{5}+240 x^{4}+720 x^{3}+1080 x^{2}+810 x \\
&+243 . \\
&\left(x^{2}-1\right)^{6}=
\end{aligned}
$$

$$
\left(x^{2}-\sqrt{x}\right)^{4}=
$$

Part H We can generate the coefficients on your calculator if you have a special button.

Binomial Theorem

$$
\begin{aligned}
& (a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+ \\
& \cdots+\binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n} \\
& (a+b)^{6}=\binom{6}{0} a^{6} b^{0}+\binom{6}{1} a^{5} b^{1}+\binom{6}{2} a^{4} b^{2} \\
& +\ldots+\binom{6}{5} a^{1} b^{5}+\binom{6}{6} b^{6} \\
& (m+n)^{(6)}=m^{6}+6 m^{5} n+15 m^{4} n^{2}+20 m^{3} n^{3}+\cdots \\
& \binom{6}{0} \quad\binom{6}{1} \quad\binom{6}{2}_{6} C_{2}^{\binom{6}{3}}\binom{6}{4}
\end{aligned}
$$

Part H Using binomial Theorem expand the following:

$$
\left.\binom{6}{0}\binom{6}{1} \quad\binom{6}{2}{ }_{6} C_{2}^{\binom{6}{3}} \text {, } \begin{array}{l}
6 \\
4
\end{array}\right)
$$

Part H Using binomial Theorem expand the following:

$$
\begin{aligned}
& (2 x+1)^{5}= \\
& \left(x^{2}-3\right)^{6}= \\
& n=0 \\
& n=1 \\
& \binom{1}{0}\binom{1}{1} \\
& n=2 \quad\binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
& 4 \times \frac{8 x}{8} 7 \times 26 \times 5 \\
& n=8 \quad\binom{8}{0}\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7}\binom{8}{8} \\
& \begin{array}{ccccccccccccc}
1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 \\
{ }_{8} C_{0} & { }_{8} C_{1} & C_{2} & C_{2} & C_{3} & C_{4} & C_{5} & C_{8} & C_{6} & C_{1} & C_{8}
\end{array}
\end{aligned}
$$

