U7D4-T Arithmetic Series

\&

U7D4-T
Arithmeti...

U7D4 MCR SUI SEQUENCES AND SERIES
 Arithmetic Series

An arithmetic series is the sum of the terms of an arithmetic sequence.

If the sequence is $t_{1}, t_{2}, t_{3}, t_{4}, \ldots, t_{n}$, then the series is $S_{1}, S_{2}, S_{3}, S_{4}, \ldots, S_{n}$ where :

$$
\begin{aligned}
& s_{1}=t_{1}=a \\
& s_{2}=t_{1}+t_{2} \\
& s_{3}=t_{1}+t_{2}+t_{3} \\
& s_{4}=t_{1}+t_{2}+t_{3}+t_{4}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& s_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& a \text { is the first term } \\
& d \text { is the common difference }
\end{aligned}
$$

n is the number of terms
(the term number of the last term in the series)

Or the formula can be written as :

$$
\begin{aligned}
& s_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& s_{n}=\frac{n}{2}[a+a+(n-1) d] \\
& s_{n}=\frac{n}{2}\left[t_{1}+t_{n}\right] \\
& s_{n}=n\left[\frac{t_{1}+t_{n}}{2}\right] \quad S_{n=\frac{n}{2}\left(a+t_{n}\right)}
\end{aligned}
$$

And so, we have two different versions of the same formula.

Examples:

1. Find the sum of the first 100 terms of

$$
\begin{aligned}
& 8+11+14+\ldots \\
& a=8 \quad d=3 \quad n=100 \\
& \begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{100} & =\frac{100}{2}[2(8)+\underbrace{99(3)}] \\
& =50(16+300-3) \\
& =50(313) \\
& =15650
\end{aligned}
\end{aligned}
$$

\therefore the sum is 15650 .
2. Find the sum of

* we don't know what n is*
recall: $t_{n}=a+(n-1) d$
So,

$$
\begin{aligned}
& \text { So, } \begin{aligned}
& 1.1+(n-1)(0.1)=8.9 \\
& 1.1+0.1 n-0.1=8.9 \\
& 1+\frac{1}{10} n=8.9 \\
& \frac{1}{10} n=7.9 \\
& n=79
\end{aligned} \\
& S_{n}=\frac{n}{2}\left(a+t_{n}\right) \\
& S_{79}= \frac{79}{2}(1.1+8.9) \\
& S_{79}= \frac{79}{2}(10)
\end{aligned}
$$

$$
S_{79}=395
$$

\therefore the sum is 395 .
3. If the sum of n terms of a sequence is given by $S_{n}=n^{2}+n$, find t_{11}.

$$
\begin{aligned}
& S_{11}=11^{2}+11 \quad S_{1}=1^{2}+1 \\
& =|2|+1 \mid \\
& S_{1}=2 \\
& S_{11}=132 \\
& \text { So, } t_{1}=2 \\
& t_{11}=\text { ? } \\
& a=2 \\
& n=11 \\
& S_{n}=\frac{n}{2}\left(a+t_{n}\right) \\
& 132=\frac{11}{2}\left(2+t_{11}\right) \\
& 12 \times 2=2+t_{n} \\
& 132 \times \frac{2}{11}=2+t_{11} \\
& 24-2=t_{11} \\
& t_{11}=22
\end{aligned}
$$

U7D4 HW: p. 469 \#1-5(eoo)

