Day	text	Topic	Practice	Done \checkmark
1	5.3	Periodic Behaviour - Cycle, period, amplitude	p. 359 \#1, 2, 3b, 4, 5	
2	5.4	Graphs of Sinusoidal Functions	Handout	
3	5.5	Vertical Stretches of Sinusoidal Functions $y=a \sin \theta \quad \& \quad y=a \cos \theta$	p. 374 \#1, 7a, 10a, 11a	
4		Horizontal Stretches of Sinusoidal Functions $y=\sin (k \theta) \& y=\cos (k \theta)$	p. 374 \#2 all - just in degrees, not radians, 3-6(b only), 8b	
5	5.6	QUIZ Translations of Sinusoidal Functions $\begin{aligned} & -y=\sin (\theta-p)+q \\ & -y=\cos (\theta-p)+q \end{aligned}$	p. 387 \#1abceh, 2abdeg, 3ad, 5ab, 6ab	
6	5.6	Combinations of Transformations $\begin{aligned} & -y=a \sin k(\theta-p)+q \\ & -y=a \cos k(\theta-p)+q \end{aligned}$	Pg. 387: \#5cd, \#7bcd, \#8d, \# 9 (P is $360^{\circ}, 180^{\circ}, 720^{\circ}$ and 90° respectively and H is 180 and 90° respectively), $\# 11 \mathrm{~b}\left(\pi=180^{\circ}, 2 \pi=360^{\circ}, 3 \pi=540^{\circ}\right)$	
7		Applications/Problem Solving Using Trig Functions (Ferris Wheel, Tides, Climate, etc.)	Pg. 388: \#12a - d (assume t=0 is low tide), \#14, \#16 \& Worksheet: Trig Graphing Applications	
8	5.8	Solving Trig Equations	Page 408 \#2, 3acef, 5abc. Solve in degrees.	
9	5.8	Solving Trig Equations (Continued)	Page 408-409 \#3bdg, 5def, 11(factor by grouping). Solve in degrees.	
10		Review	$\begin{aligned} & \text { p. } 412-417 \# 15,16,17,18,19,20 \text { degrees only, } 21 \text { (a- } \\ & \text { period } \left.=540^{\circ}, b-\text { period }=180^{\circ}\right), 22,24,25 a b, 26,27 b\left(\pi / 4=4^{\circ}\right. \text {, } \\ & \left.\pi / 2=90^{\circ}\right), 30,31,35-37 \text { (in degrees - teacher will provide answers for } \\ & 35,36,37 \\ & \text { p. } 418 \# 4 \mathrm{~cd}, 7 a b, c \text { (phase shift } 45^{\circ} \text {), } 8 \mathrm{a}, 12 \text { (in degrees, teacher } \\ & \text { will provide answers) (eoo), } 9 \end{aligned}$	
11		UNIT TEST		

A few more review questions

Function	Domain	Range	Amplitude	Period	Phase Shift
$y=2 \sin \left(x-90^{\circ}\right)$					
$y=1 / 2 \cos \left(x+90^{\circ}\right)$					
$y=1 / 2 \sin \left(1 / 2 x-180^{\circ}\right)-2$					
$y=2 \cos 1 / 2\left(x-180^{\circ}\right)+1$					
$y=-2 \cos \left(3 x-180^{\circ}\right)+2$					

NOTE: Many answers in the back of the textbook are in radians rather than degrees. Please see your teacher for answers measured in degrees. (For your interest: $180^{\circ}=\pi$)

Essential Skills: By the end of this unit I will be able to....

Demonstrate an understanding of periodic behavior
Given an graph or equation, be able to identify period, phase shift and amplitude
Graph sinusoidal functions including transformations

Determine the equation of a sinusoidal function (from graph and given key info.)
Solve Trigonometric Equations
Solve real-world problems involving sinusoidal functions

