	Function	Domain	Range	Amplitude	Period	Phase Shift
3)	$y = 2\sin(x - 90^{\circ})$	Exerlors x=360}	EyeIR -2 = 4 = 2}	a	360°	Right 90°
b)	$y = \frac{1}{2}\cos(x + 90^{\circ})$	[XER SEXE368]	Fuer 1= 545= }	生	3600	Lef+ 900
c)	$y = \frac{1}{2}\sin(\frac{1}{2}x - 180^{\circ}) - 2$	[xtR 0° 5 x 5720°]	[46R]- = < 45]	古	720°	Right 90°
d)	$y = 2\cos^{1/2}(x - 180^{\circ}) + 1$	[x6R 0'5 x6728]	{46R1-15453}	2	720°	F19H 180°
e)	$y = -2\cos(3x - 180^{\circ}) + 2$	[xcR 0° & x & 128]	[yerbsus4]	2	120	right 60°

NOTE: Many answers in the back of the textbook are in radians rather than degrees. Please see your teacher for answers measured in degrees. (For your interest: $180^{\circ} = \pi$)

Essential Skills: By the end of this unit I will be able to....

- □ Demonstrate an understanding of periodic behavior
 □ Given an graph or equation, be able to identify period, phase shift and amplitude
 □ Graph sinusoidal functions including transformations
 □ Determine the equation of a sinusoidal function (from graph and given key info.)
 □ Solving Trigonometric Equations
 □ Solve real-world problems involving sinusoidal functions
- a) min -2 c) min $-\frac{1}{2}$ Z = $-\frac{1}{2}$ d) min -2 +1 = -1 c) min -2 +2 = 0

 max 2 max $\frac{1}{2}$ Z = $-\frac{3}{2}$ $y = \frac{1}{2}\sin\frac{1}{2}(x-90) 2$ $y = -\frac{360}{2}$ $y = -\frac{360}{2}$