1. An object with a mass of 17.0 kg displaces 2.5 L of water when placed in a large overflow container. Calculate the density of the object.

$$
\begin{aligned}
D & =\frac{M}{V} \\
& =\frac{17}{25} \\
& =6.8
\end{aligned}
$$

$$
m=17 \mathrm{~kg}
$$

$$
V=2.5 \mathrm{~L}
$$

$$
D=?
$$

\therefore the density is $6.8 \mathrm{~kg} / \mathrm{L}$
2. Calculate the mass of a liquid with a density of $2.2 \mathrm{~g} / \mathrm{mL}$ and a volume of 35.0 mL

$$
\begin{aligned}
m & =D \times v \\
& =2.2 \times 35 \\
& =77
\end{aligned}
$$

$$
\begin{aligned}
& D=2.2 \mathrm{~g} / \mathrm{mL} \\
& V=35 \mathrm{~mL} \\
& m=?
\end{aligned}
$$

\therefore the mass is 775
3. A 600 mL bottle of a liquid has a mass of 678.22 g .
(a) What is the density of the liquid? (Answer to 3 decimal places)

$$
\begin{aligned}
D & =\frac{M}{v} \\
& =\frac{678.22}{600}=1.13
\end{aligned}
$$

$$
\begin{aligned}
& M=678.22 \\
& V=600 \\
& D=?
\end{aligned}
$$

\therefore the density ir $1.130 \mathrm{~s} / \mathrm{m}^{2}$
(b) What volume container would be required to store 3 kg of the liquid from question? (answer to the nearest mL)

$$
\begin{aligned}
V & =\frac{D}{m} \frac{m}{D} \\
& =\frac{+13}{3000} \frac{3000}{1.13} \\
& =265^{4}
\end{aligned}
$$

$$
\begin{aligned}
m & =3 \mathrm{~kg} \\
& =3000 \mathrm{~g} \\
D & =1.13 \mathrm{~g} / \mathrm{mL} \\
V & =7
\end{aligned}
$$

\therefore the volume is 2654 mL
4. The data table gives the mass and volume of different blocks.

Make a line graph, using the data, by placing volume on the x-axis and mass on the γ-axis
Mass and Volume of Blocks

Block	Mass (ह)	Volume (mL)
1	4.9	10.2
2	20.4	41.0
3	145.8	292.6
4	200.0	398.9

What is the mass of the block when the volume is 50 mL ? (1 mark) 289

What is the volume of the block when it has a mass of 100 g ? (1 mark)
192 mL

