\qquad

Thin Lens
 Practice Quiz

1. A lens has a focal length of 4 cm . The object has a height of 3 cm and is located 8 cm from the lens. Determine the location, height and type of image by:
(a) ray diagram
(b) mathematically
2. An object is placed 25 cm from a lens. An inverted, real image is seen 20 cm from the lens. What is the focal length of the lens? What type of lens is it?
3. A diverging lens has a focal length of 12 cm . An upright, virtual image was located 6 cm from the lens. Where was the object located?
(1)
(a)

(b)

$$
\begin{array}{ll}
\frac{1}{f}=\frac{1}{a_{0}}+\frac{d}{d} & f=4 \mathrm{~cm} \\
\frac{1}{4}=\frac{1}{8}+\frac{1}{a_{i}} & a_{0}=8 \mathrm{~cm} \\
\frac{1}{a_{i}}=\frac{1}{4}-\frac{1}{8} & a_{1}=7 \\
d_{i}=8 \mathrm{~cm} & \\
\frac{h_{i}}{h_{0}}=-\frac{\alpha_{i}}{\alpha_{3}} & h_{0}=3 \mathrm{~cm} \\
\frac{h_{i}}{3}=-\frac{8}{8} & a_{i}=8 \mathrm{~cm} \\
8 h_{i}=(-5)(3) & h_{i}=-3 \\
&
\end{array}
$$

(2)

$$
\begin{array}{ll}
\frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}} & d_{0}=25 \mathrm{~cm} \\
\frac{1}{f}=\frac{1}{25}+\frac{1}{20} & d_{i}=20 \mathrm{~cm} \\
f=11.1 & f=?
\end{array}
$$

\therefore the focal length is 11 cr and it is a converging lens
(3)

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{a_{0}}+\frac{1}{a} \\
& \frac{1}{-12}=\frac{1}{a_{0}}+\frac{1}{-6} \\
& \frac{1}{a_{0}}=\frac{1}{6}-\frac{1}{12} \\
& d_{0}=12 \mathrm{~cm} \\
& d_{i}=-6 c r \\
& a_{0}=7
\end{aligned}
$$

\therefore the object distance wa, 12 co

