1. An object with a mass of 17.0 kg displaces 2.5 L of water when placed in a large overflow container. Calculate the density of the object.

$$
\begin{aligned}
D & =\frac{M}{V} \\
& =\frac{17}{2.5}
\end{aligned}
$$

$$
M=17.0 \mathrm{~kg}
$$

$$
V=2 r L
$$

$$
1=?
$$

\therefore the density $116.8 \mathrm{ks} / \mathrm{L}$
2. Calculate the mass of a liquid with a density of $2.2 \mathrm{~g} / \mathrm{mL}$ and a volume of 35.0 mL

$$
\begin{aligned}
& D=\frac{m}{v} \\
& 2.2=\frac{m}{35} m=72 \mathrm{~s} \\
& \therefore \text { the mass ir } 77 \mathrm{~s} .
\end{aligned}
$$

$$
D=22 \mathrm{~s} / \mathrm{m}^{2}
$$

$$
V=35.0 \mathrm{~m}^{2}
$$

$$
m=?
$$

3. A 600 mL bottle of a liquid has a mass of 678.22 g .
(a) What is the density of the liquid? (Answer to -3 decimal places)

$$
D=\frac{m}{v}=\frac{678.22}{600}=1.130
$$

$$
\begin{aligned}
& m=67 t .22 \mathrm{~s} \\
& v=600 \mathrm{~mL} \\
& 1=?
\end{aligned}
$$

\therefore the density le $1.130 \mathrm{~g} / \mathrm{mL}$
(b) What volume container would be required to store 3 kg of the liquid from question? (answer to the nearest mL)

$$
\begin{aligned}
& D=\frac{M}{V} \\
& 1.13=\frac{3600}{V} \\
& 1.13 V=3000 \\
& V=2654.86
\end{aligned}
$$

$$
\begin{aligned}
D & =1.13 \mathrm{~s} / \mathrm{m} 2 \\
\mathrm{~m} & =3 \mathrm{ks} \\
& =3000 \mathrm{~s} \\
v & =7
\end{aligned}
$$

\therefore the volume would be 2655 ml .
4. The data table gives the mass and volume of different blocks.

Make a line graph, using the data, by placing volume on the x-axis and mass on the y-axis
Mass and Volume of Blocks

Block	Mass (g)	Volume (mL)
1	4.9	10.2
2	20.4	41.0
3	145.8	292.6
4	200.0	398.9

What is the mass of the block when the volume is 50 mL ? (1 mark)

$$
25 \mathrm{~s}
$$

What is the volume of the block when it has a mass of 100 g ? (1 mark)

