Density Problems
Solve the following problems using the GRASSS method.

1. Calculate the mass of a liquid with a density of $3.2 \mathrm{~g} / \mathrm{mL}$ and a volume of 25.0 mL .

$$
\begin{aligned}
D & =\frac{M}{V} & D & =3.2 \mathrm{~g} / \mathrm{mL} \\
(25) 3.2 & =\frac{M}{25}(25) & V & =25.0 \mathrm{~mL} \\
m & =(25)(3.2) & M & =? \\
& =80 & &
\end{aligned}
$$

\therefore the mare of the liquid is $\mathbb{U} .0 \times 10^{\prime} \mathrm{g}$
2. Calculate the density of a 500.0 g rectangular block with the following dimensions: length $=8.0 \mathrm{~cm}$, width $=6.0 \mathrm{~cm}$, height $=5.0 \mathrm{~cm}$.

$$
\begin{aligned}
D & =\frac{m}{2} \\
& =\frac{500}{240} \\
& =2.1
\end{aligned}
$$

$$
\begin{aligned}
m & =500.05 \\
v & =1 \times w+2 \\
& =8 \times 6 \times 5 \\
& =243 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore the density of the blocle is $2 \mathrm{~g} / \mathrm{as}^{3} \mathrm{D}=$?
3. Calculate the mass of a solid metal cylinder with a density of $2.6 \mathrm{~g} / \mathrm{cm}^{3}$, a diameter of 1.8 cm , and a length of 4.0 cm .

$$
D=\frac{M}{V}
$$

$$
(11.304) 2.6=\frac{\mathrm{M}}{11.304}(11.707)
$$

$$
m=(10.1736)(2 c)=20.45
$$

$$
\begin{aligned}
D & =2.0 \mathrm{~g} / \mathrm{cm}^{3} \\
V & =\pi \mathrm{r}^{2} \mathrm{~L} \\
& =(3.14)(.4)^{2} \mathrm{CH}^{2} \\
& =10.1730 \mathrm{~cm}^{3} \\
m & =?
\end{aligned}
$$

\therefore the mass ir 26 S
4. An irregular object with a mass of 18.0 kg displaces 2.5 L of water when placed in a large overflow container. Calculate the density of the object.

$$
\begin{aligned}
D & =\frac{M}{V} \\
& =\frac{18}{2 \cdot 5}=7.2
\end{aligned}
$$

\therefore the density is $7.2 \mathrm{~kg} / \mathrm{L}$

$$
\begin{aligned}
& m=18 \mathrm{~kg} \\
& U=2.5 \mathrm{~L} \\
& D=?
\end{aligned}
$$

5. A graduated cylinder has a mass of 80.0 g when empty. When 20.0 mL of water is added, the graduated cylinder has a mass of 100.0 g . If a stone is added to the graduated cylinder, the water level rises to 45.0 mL and the total mass is now 156.0 g . What is the density of the stone?

$$
\begin{aligned}
D & =\frac{M}{V} & V & =45-20 \\
& =\frac{52}{25} & m & =150-25 \cdot 20 \\
& =2.24 & & =56 \mathrm{~s}
\end{aligned}
$$

\therefore the density it $2.24 \mathrm{~g} / \mathrm{mL}$

$$
1 D=?
$$

