MPM 2DI EXAM REVIEW

03 – Wednesday, January 29, 2020 8:30 am – 10:00 am

* A PENCIL, SCIENTIFIC CALCULATOR AND RULER ARE REQUIRED *

Please Note: Your final mark in this course will be calculated as the better of:

MARK 1	
Quizzes	15 %
Tests	55 %
Final Exam	30 %

Final Exam100 %

WATERLOO-OXFORD DISTRICT SECONDARY SCHOOL FINAL EXAMINATION

Department:	Mathematics	Date:	Wednesday, January 29, 2020
Course:	MPM 2DI	Time:	8:30 AM
Section:	01	Length:	90 minutes
Teachers:	Mr. G. Albrecht		
		Page:	1 of 9
Ctor I and Manager		Maula	1
Student Name:		Mark:	/

INSTRUCTIONS

- 1. A scientific calculator is permitted; calculators built into phones or any other electronic devices are not. <u>Check to</u> <u>make sure your calculator is set to Degrees</u>.
- 2. Write all answers in pencil.
- 3. All formulas introduced this year are indicated on the front page. Formulas from previous years are expected to have been committed to memory.
- 4. You have 90 minutes to complete the exam. No extra time will be given. If you are done early, check each of your solutions carefully and double check your calculations.
- 5. For mathematical answers, write full solutions showing all important logical steps. Full marks may not be granted if only the final answer is shown.

FORMULAS

$$y = a(x-s)(x-t)$$

$$y = ax^{2} + bx + c$$

$$y = a(x-h)^{2} + k$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x^{2} + y^{2} = r^{2}$$

$$d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

$$M = \left(\frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2}\right)$$
SOH-CAH-TOA
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$

MPM 2DI COURSE OVERVIEW

Unit 1: Solving Linear Systems

- Find the point of intersection by graphing •
- Find the point of intersection by substitution ٠
- Find the point of intersection by elimination
- Verify if a point is on a line using a left side/right side check •
- Understand when a system has one solution, no solution or many solutions •

Unit 2: Analytic Geometry

- Distance between two points (length of a line segment): $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- Coordinates of the midpoint of a line segment: $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
- Equation of a circle with centre (0, 0) and radius r: $x^2 + y^2 = r^2$.
- Slope of a line segment: $m = \frac{y_2 y_1}{x_2 x_1}$
- Perpendicular lines meet at a 90° (right) angle and have negative reciprocal slopes •
- Use length of a line segment to determine if a triangle is isosceles, equilateral or scalene
- Use slope of a segment to determine if a triangle is a right-angled triangle
- Use both length of a line segment and slopes of lines to determine if a quadrilateral is a square, • rectangle, parallelogram or rhombus
- Find the equation of a perpendicular bisector, an altitude and a median of a triangle. •

Unit 3: Polynomials and Factoring

- Add and subtract polynomials •
- Multiply polynomials •
- Factor polynomials (common, simple trinomial, complex trinomial, difference of squares)

Units 4 & 5: Graphing Quadratic Relations

- Understand the terms: vertex, axis of symmetry, direction of opening, maximum value, minimum value, optimum value, roots, zeros
- Factor a quadratic in standard form: $y = ax^2 + bx + c$ to put it in factored form: y = a(x-s)(x-t)•
- Complete the square on a quadratic in standard form to put it in vertex form: $y = a(x-h)^2 + k$.
- Graph a parabola, given its equation in standard, factored or vertex form. •
- Identify the effect of simple transformations on the graph of $y = x^2$

If a < 0. reflection in x-axis

If a > 1 or a < -1, vertical stretch by a factor of a

If -1 < a < 1,

by a factor of l/a

If h > 0, translation right *h* units.

If h < 0, translation left *h* units. vertical compression

If k < 0, translation down k units.

Units 4 & 5: Graphing Quadratic Relations Continued...

Exponent Laws

$$a^{-n} = \left(\frac{1}{a}\right)^n \qquad \qquad a^0 = 1 \qquad \qquad x^m \cdot x^n = x^{m+n}$$
$$x^m \div x^n = x^{m-n} \qquad \qquad \left(x^m\right)^n = x^{mn} \qquad \qquad \left(xy\right)^n = x^n y^n \qquad \qquad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

Unit 6: Solving Quadratic Equations, Quadratic Word Problems

- Solving by factoring
- Solving by completing the square

• Solving using the quadratic formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Determine what you are asked to find
 - \rightarrow If it requires finding a maximum or minimum, then complete the square.
 - \rightarrow If it requires solving a quadratic equation, the factor or use the quadratic formula.
- Look at your answer and ask yourself: "Is this answer possible?" You may find that your answer is not possible because it does not fit with the facts presented in the problem.

Unit 7: Congruent and Similar Triangles and Trigonometry

- Conditions for congruency: $SSS \cong$, $SAS \cong$, $ASA \cong$
- Conditions for similarity: SSS~, SAS~, AA~
- Congruent triangles: corresponding sides equal, corresponding angles equal
- Similar triangles: corresponding sides proportional, corresponding angles equal
- Primary trigonometric ratios: SOH-CAH-TOA
- Know how to use primary trig ratios to solve right-angled triangles
- Sine Law: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ or $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$
- Cosine Law: $a^2 = b^2 + c^2 2bc \cos A$ or $b^2 = a^2 + c^2 2ac \cos B$ or $c^2 = a^2 + b^2 2ab \cos C$
- Use Sine Law or Cosine Law as appropriate to solve non-right angled triangles.

Exam Details

- Double check your exam date, time and room number with your teacher.
- Come prepared with a scientific calculator, pencils, eraser and a ruler.
- Study!! Create a study schedule NOW. Arrange for extra help if necessary.
- Do ALL assigned review questions and check your answers. Do extra work on topics you struggle with.
- Old tests and quizzes are a great study aid. Redo and check your solutions with the corrections you have copied down.

MPM 2DI COURSE REVIEW

- (a) x + 2y = 4 2x - 3y = 7(b) y = 2x + 34x + y = 8
- 4. Solve each system by elimination:

a)	3x + 8y = -3	b) $11m + 3n = 25$	c) $3x - 4y = 10$	d) $4x - 5y = -22$
	5x + 8y = -5	-11m + 7n = -15	2x - 3y = 7	5x + 6y = -3

- 5. The perimeter of a rectangle is 50 *cm*. The length is 7 *cm* more than the width. Find the dimensions of the rectangle.
- 6. Amy invested \$20,000, part in bonds that paid 3% per annum and the remainder in term deposits that paid 5% per annum. The total interest after one year was \$760. How much did she invest at each rate?
- 7. Brand A fertilizer is 32% phosphorus, while Brand B is 18% phosphorus. How much of each must be used to produce 56 *tonnes* of a 24% mixture?
- 8. The distance from Cambridge to Ottawa is 480 *km*. Gerry is able to drive at 100 *km/hour* on Highway 401 but can only average *60 km/hr* on Highway 7. If the trip takes 6 *hours*, how far did he travel on each highway?
- 9. Without graphing, determine if the linear system has zero, one, or many solutions:

a) y = x + 5 y = x - 1b) 4x - y = -3 2x - y = -1c) y = -x + 4 3y = -3x + 12Additional Practice: page 137 #1, 2a, 3a, 5, 6

Unit 2: Analytic Geometry

- 10. Find the length of the line segment joining each pair of points. Express each answer to the nearest tenth of a unit.
 - a) (2, 5) and (5, 7) b) (-1, -3) and (-2, -4)
- 11. Find the coordinates of the midpoint of each line segment, given the endpoints.a) (-2, 2) and (4, 8)b) (3, 3) and (-9, 3)
- 12. The midpoint of AB is M(-2, 1). If one endpoint is A(-7, 3) what are the coordinates of B?
- 13. Write an equation for the circle with centre (0,0) and radius 15.
- 14. Determine the radius of the circle with centre (0, 0) and equation $x^2 + y^2 = 100$.
- 15. A rectangle has vertices Q(5, 6), R(5, -3), S (1, -3) and T(1,6). Find the:
 a) Perimeter
 b) Area
- 16. Triangle ABC has vertices A(3, 4), B(-5, 2) and C(1, -4). Determine:
 - a) An equation for *CD*, the median from *C* to *AB*.
 - b) An equation for *GH*, the right bisector of *AB*.
 - c) An equation for *CE*, the altitude from *C* to *AB*.
- 17. Find the distance from the point P(3, 5) to the line x = -2.
- 18. Find the distance from the point Q(-2, -2) to the line y = 3.
- 19. A parallelogram has vertices A(-2, -2), B(3, 3), C(7, 4) and D(2, -1). Verify that the diagonals bisect each other.

Additional Practice: page 218 #1, 2, 3, 5

Unit 3: Polynomials and Factoring

20. Simplify:

a) (4x+3) + (5x+4)

- 21. Expand and simplify:
 - a) 3(x+5) + 4(x-3)
 - c) 3x(2x-4) x(x+5)
 - e) 2(3x-2)(3x+2)
 - g) 3(y+2)(y-3) + 2(y-4)(y+1)
 - i) $(x+2)^2$

- b) $(2x^2 3x + 4) (x^2 + 4x 1)$
- b) 5(t+7)-9(t-2)d) $4(x^2-2x+5)-(2x^2+3x-2)$ f) 4(2x+1)(x-5)h) 2(2x-3)(x+4)-(4x+1)(x+2)j) $(3x-1)^2$

22. Factor, if possible:			
a) $7x + 42$	b) $4x^2 - 28x$	c) $6xy - 7st$	d) $14r^2t - 7rt + 21rt^2$
23. Factor, if possible: a) $x^2 + 7x + 12$ e) $y^2 + 10y + 21$	b) $y^2 + y - 6$ f) $x^2 - 11x + 18$	c) $k^2 + k + 1$	d) $x^2 - 2x - 15$
24. Factor fully: a) $2x^2 - 6x - 8$	b) $3x^2 + 12x + 9$	c) $2xt - 6x - 3t + 9$	d) $xy + x - 2y - 2$
25. Factor, if possible: a) $3x^2 + 5x - 2$	b) $2y^2 + 11y + 12$	c) $4x^2 + 8x + 5$	d) $4x^2 - 10x + 3$
26. Factor, if possible: a) $x^2 - 16$	b) $y^2 + 10y + 25$	c) $x^2 + 9$	d) $x^2 - 6x + 9$
27. Factor fully: a) $4x^2 + 6x - 10$	b) $18x^2 - 30x + 12$	c) $7x^2 - 7$	d) $5x^2 - 10x + 20$
Additional Practice: page 297 #3, page 307 #3, 4, 5			

Units 4 & 5: Graphing Quadratic Relations

28. For each quadratic relation, find the zeros and the coordinates of the vertex and sketch the graph: a) y = (x-2)(x+4) b) y = -2(x+1)(x-3) c) $y = x^2 + 6x$

- 29. The zeros of a parabola are -2 and 7 and it crosses the y-axis at -28.
 - a) What is the equation of the quadratic relation in factored form?
 - b) What are the coordinates of the vertex?
- 30. State the vertex, axis of symmetry and direction of opening of each parabola:

a)
$$y = (x-2)^2 + 1$$
 b) $y = -\frac{1}{2}(x+4)^2$

31. Express the following quadratic relations in vertex form by completing the square.

a)
$$y = x^2 + 6x - 3$$
 b) $y = \frac{1}{2}x^2 + 5x - 7$

- 32. Find, in vertex form, the equation of the quadratic relation with vertex (-1, -4), passing through (3, 4).
- 33. Graph the parabola $y = x^2$. Then use transformations to graph the following parabolas:
 - a) $y = 3x^2$ b) $y = -x^2 + 5$ c) $y = -(x-1)^2 - 3$ d) $y = 3(x+4)^2$ e) $y = 2(x+3)^2 - 4$ f) $y = -\frac{1}{2}(x+7)^2 + 2$ Additional Practice: page 281 #4, 5, page 422 #9, page 424 #12bc

Unit 6: Solving Quadratic Equations

34. Solve by factoring:

- a) $x^2 8x 9 = 0$ b) $x^2 + 7x + 6 = 0$ c) $x^2 - 121 = 0$ d) $x^2 - 6x + 9 = 0$ e) $2x^2 + 3x = 0$ f) $4x^2 - 9 = 0$ g) $3x^2 + 8x - 3 = 0$
- 35. Solve using the quadratic formula. Round answers to two decimal places.
 - a) $x^2 4x 1 = 0$ b) $2x^2 - x - 3 = 0$ c) $5x^2 - 6x - 2 = 1$ d) $m^2 - 5m + 3 = 0$ e) $3w^2 + 8w + 2 = 0$ f) $-3x^2 + 12x - 7 = 0$

Additional Practice: page 335 #16, page 403 #4

Unit 6: Quadratic Word Problems

- 36. The sum of the squares of three consecutive integers is 194. What are the integers?
- 37. The hypotenuse of a right triangle is 26 *cm*. The sum of the other two sides is 34 *cm*. Find the lengths of the other two sides of the triangle.
- 38. A rectangular field is to be enclosed by 800 *m* of fencing.a) What dimensions will give the maximum area?b) What is the maximum area?
- 39. A rectangular building that measures 100 m by 80 m is to be surrounded by a lawn of uniform width. The area of the lawn must equal the area of the building. Find the width of the lawn to the nearest *metre*.
- 40. The path of a baseball after a batter hit a pop-up can be modeled by the following equation: $h = -0.07(d - 10)^2 + 8$ where *h* is the height of the ball in *metres* and *d* is the horizontal distance of the ball from home plate, where it was hit.
 - a) What was the maximum height of the ball?
 - b) What was the horizontal distance of the ball from home when it reached its maximum height?
 - c) What was the height of the ball when it was hit?
 - d) If the ball was caught 19.5 *m* from home plate, how far off the ground was the infielder's glove when the ball was caught, to the nearest tenth of a *metre*?

Additional Practice: page 308 #12, page 391 #14, page 405 # 16, 18

Unit 7: Congruent and Similar Triangles

41. $\Delta RST \sim \Delta WXY$. Find the lengths of the unknown sides.

42. Carlos is trying to determine the height of a mature tree. A young tree's height is 5.0 *m* and it casts a 2.0 *m* shadow. At the same time, the mature tree casts a 3.5 *m* shadow. How tall is the mature tree?

Additional Practice: page 518 # 3, 4, page 580 #3

Unit 7: Trigonometry

- 43. Solve each of the following triangles. Round each side length to the nearest tenth and each angle to the nearest degree.
 - a) In $\triangle ABC$, $\angle B = 90^{\circ}$, $\angle A = 47^{\circ}$ and b = 15 cm.
 - b) In $\triangle DEF$, $\angle D = 90^{\circ}$, e = 8 m and f = 12 m.
- 44. From a point 35 *m* from the base of a building, the angle of elevation of the top of building is 65° . How tall is the building, to the nearest *metre*?
- 45. The sides of a triangle measure 15 *cm*, 17 *cm*, and 18 *cm*. Find the measure of the largest angle, to the nearest degree.
- 46. Solve each of the following acute triangles. Round each side length to the nearest tenth and each angle to the nearest degree.
 - a) In $\triangle WXY$, $\angle W = 52^{\circ}$, $\angle X = 70^{\circ}$ and $w = 20 \ cm$
 - b) In $\triangle PQR$, $\angle R = 68^{\circ}$, r = 15 m and q = 16 m
 - c) In $\triangle ABC$, $\angle B = 55^{\circ}$, a = 11 cm and c = 20 cm
 - d) In ΔJKL , j = 23 m, k = 27 m and l = 29 m
- 47. A plot of land is in the shape of a triangle. Two of the angles measure 48° and 74° . The length of the side between them is 90 *m*.
 - a) Calculate the perimeter of the plot to the nearest *metre*.
 - b) Calculate the area of the plot to the nearest square *metre*.

Additional Practice: page 524, #18, page 526 # 1c, 5b, page 582 #4, 5, 6, page 583 # 7, 8, 9

AN	ISWER						
1. a)	-22	1. b)	-19/72	1. c)	71	1. d)	-7/6
1 e)	-35/12	1. f)	16	1. g)	4/25	1. h)	16/9
1. i)	1	1. j)	65/8	1. k)	1/25	2.	(2, 3)
3. a)	(26/7, 1/7)	3. b)	(5/6, 14/3)	4. a)	(-1, 0)	4. b)	(2, 1)
4. c)	(2, -1)	4. d)	(-3, 2)	5.	(16 cm, 9 cm)	6.	(\$12000, \$8000)
/.	$\frac{(24 t, 32 t)}{\text{many solutions}}$	$\frac{8}{10}$	(300 km, 180 km)	9.a)	Zero solutions	9. b)	(1, 5)
11. b)	(-3, 3)	10. a) 12.	(3, -1)	13.	$x^2 + y^2 = 225$	11. a) 14.	r = 10
15. a)	P = 26 units	15. b)	$A = 36 \ units^2$	16. a)	$y = \frac{-7}{2}x - \frac{1}{2}$	16. b)	$\mathbf{y} = -4\mathbf{x} - 1$
16. c)	y = -4x	17.	5 units	18.	5 units	20. a)	9x + 7
20. b)	$x^2 - 7x + 5$	21. a)	7x + 3	21. b)	-4t + 53	21. c)	$5x^2 - 17x$
21. d)	$2x^2 - 11x + 22$	21. e)	$18x^2 - 8$	21. f)	$8x^2 - 36x - 20$	21. g)	$5y^2 - 9y - 26$
21. h)	<i>x</i> – 26	21. i)	$x^{2} + 4x + 4$	21. j)	$9x^2 - 6x + 1$	22. a)	7(x+6)
22. b)	4x(x-7)	22. c)	Does not factor	22. d)	7rt(2r-1+3t)	23. a)	(x+4)(x+3)
23. b)	(y+3)(y-2)	23. c)	Does not factor	23. d)	(x-5)(x+3)	23. e)	(y+7)(y+3)
23. f)	(x-9)(x-2)	24. a)	2(x+1)(x-4)	24. b)	3(x+3)(x+1)	24. c)	(2x-3)(t-3)
							Hint: factor by
24. d)	(x-2)(y+1)	25. a)	(x+2)(3x-1)	25. b)	(2v+3)(v+4)	25. c)	Does not factor
25. d)	Does not factor	26. a)	(x-4)(x+4)	26. b)	$(2y+2)(y+1)^2$	26. c)	Does not factor
26. d)	$(x-3)^2$	27. a)	2(x-1)(2x+5)	27. b)	6(x-1)(3x-2)	27. c)	7(x-1)(x+1)
27. d)	$5(x^2 - 2x + 4)$	28. a)	zeros: 2 and -4 ,	28. b)	zeros: -1, 3,	28. c)	zeros: $0, -6$
29. a)	y = 2(x+2)(x-7)	29. b)	(5/2, -81/2)	30. a)	vertex: (1, 8) vertex: (2, 1). axis:	30. b)	vertex: (-4, 0), axis:
		/		· · · ,	x = 2, opens: up	,	x = -4, opens: down
31. a)	$y = (x+3)^2 - 12$	31. b)	$y = \frac{1}{2}(x+5)^2 - 19.5$	32.	$y = \frac{1}{2}(x+1)^2 - 4$	33. a)	stretched by a factor of 3
33. b)	reflection in x-axis, up 5 units	33. c)	reflection in x-axis, right 1 unit, down 3 units	33. d)	stretched by a factor of 3, left 4 units	33. e)	stretched by a factor of 2, left 3 units, down 4 units
33. f)	compressed by a factor of 2, reflection in x- axis, left 7 units, up 2 units	34. a)	$x = -1, \ x = 9$	34. b)	$x = -1, \ x = -6$	34. c)	$x = \pm 11$
34. d)	<i>x</i> = 3	34. e)	$x = 0, \ x = -3/2$	34. f)	$x = \pm 3/2$	34. g)	x = 1/3, x = -3
		35. a)	x = 4.24, -0.24	35. b)	x = 1.5, -1	35. c)	x = 1.58, -0.38
35. d)	$m = 4.30, \ 0.70$	35. e)	w = -0.28, -2.39	35. f)	x = 0.71, 3.29	36.	7, 8, 9 or -9, -8, -7
37.	10 cm, 24 cm	38. a)	200 <i>m</i> by 200 <i>m</i>	38. b)	$40,000 m^2$	39.	18.4 <i>m</i>
40. a)	8 <i>m</i>	40. b)	10 <i>m</i>	40. c)	1 <i>m</i>	40. d)	1.7 <i>m</i>
41.	$RS = 4.4 \ cm,$	42.	8.75 m	43. a)	$a = 11 cm, \ c = 10.2$	43. b)	d = 14.4 mm,
	$WY = 9.6 \ cm$				$cm, \ \angle C = 43^{\circ}$		$\angle F = 56^\circ$, $\angle E = 34^\circ$
44.	75.1 <i>m</i>	45.	68°	46. a)	$\angle Y = 58^\circ, x = 23.8cm$	46. b)	$\angle Q = 81^\circ$,
					$y = 21.5 \ cm$		$\angle P = 31^\circ, p = 8.3 m$
46. c)	$\angle A = 33^\circ$, $\angle C = 92^\circ$.	46. d)	$\angle J = 49^\circ$, $\angle K = 61^\circ$.	47. a)	270.9 <i>m</i>	47. b)	$3411.9 m^2$
	$b = 16.4 \ cm$		$\angle L = 70^{\circ}$				