Unit 8: Financial Applications Day 6: Regular Annuities - Future Value

Today we will...

- 1. Learn how to use a timeline to visualize an annuity.
- 2. Learn how to use a formula to calculate the future value of a simple, ordinary annuity.

MCF3MI: 2016-17 Unit 8: Financial Applications Day 6: Regular Annuities – Future Value

Some Definitions:

A series of equal deposits or payments made at regular intervals.

Simple Annuity:

Ordinary Annuity:

In this course, we will assume a simple, ordinary annuity unless otherwise stated.

EX. Kristine has a part time job and is able to save \$200 per month. If her bank account pays 2.5% p.a. compounded monthly, how much will she have in her account at the end of one year?

METHOD 2: The Annuity Formula

There is a formula for this calculation...

Amount of an Annuity:	$A = R \left[\left(1 + i \right)^{N} \right]$	-1]	
A=A((umulated Value	R=Regular Payment	i=interest rate n= per comp paral.	number of compound periods.

3MI U8 D6 2017-2018 Regular Annuities - FV COMPLETE.notebook

Consider the same example as before...

EX. 1. Kristine has a part time job and is able to save \$200 per month. If her bank account pays 2.5% p.a. compounded monthly, how much will she have in her account at the end of one year?

 $i = \frac{0.025}{13000} = 0.0021$

EX. 2. a) A person finishes college at age 21, debt free and starts an RRSP with monthly contributions of \$50. How much will she have saved by age 50 in an account that pays 3% p.a. compounded

= -0025 n= 12 x29

b) How much interest has she earned in her RRSP?

Payments = 50 x 348

- 17 400

In terest = 27 686.42

- EX. 3. You want to retire in 30 years with \$1,000,000 in savings. Your current investments are earning, on average, 11% p.a. compounding annually.
 - a) What annual deposit must you make to reach your savings goal?

11000 000 = 1<u>(21.89229</u>657)

b) Of the final \$1,000,000, how much is interest?

1000 000 = R (199.0209779) 15024.60=R

Homework: p. 498 #3-7, 10, 14

5024.60 × 30 = 150 738

: Interest is 1000 060 - 150 738