MCF3MI

Unit 3: Solving Quadratic Equations

Day 2: Relating the Standard and Factored Forms

Standard Form

Factored Form

From the Standard Form, we can easily find the y-intercept by substituting in x = 0. Only the y interce pt will remain!

pand each of the following to put them in Standard Form and state the y-intercept:

a)
$$y = (x - 2)(x + 3)$$

 $y = (x - 2)(x + 3)$
 $y = (x - 2)(x + 3)$

yintis 0 = 3(4x2+23x-35)

Once we are in Factored Form, we can determine the zeros (x-intercepts) by:

Find the zeros of the following quadratics:

$$y = x(x-4)$$

$$= x(x-4)$$

$$= x(x-4)$$

$$= x-4=0$$

$$= x = 4$$

3MI_U3_D2_2016-17 Relating standard and factored form COMPLETE.notebook

If we know the zeros, we can determine the axis of symmetry and the vertex of the parabola.

Step 1: The axis of symmetry, also known as the X Valve. of the vertex, can be found by finding the midpoint of the zeros (add the zeros together and divide by 2).

Step 2: Once we have the x-coordinate of the vertex, we can substitute it into the equation to find the y-coordinate of the vertex.

For each of the following, determine

- The y-intercept of the function.
- The zeros of the function (by factoring)
- The axis of symmetry (by finding the midpoint of the zeros)
- The vertex (by substituting the axis of symmetry (x-coordinate) into the equation to find

3MI_U3_D2_2016-17 Relating standard and factored form COMPLETE.notebook