MCF3ME

EXAM REVIEW SOLUTIONS

CHAPTER 1: Introduction to Quadratic Functions

1. State the domain and range for the following functions. (a) $D = \{x \in R\}$ $R = \{y \in R \mid y \le 1\}$ (b) $D = \{x \in R\}$ $R = \{y \in R\}$

2. Determine whether the following relations are functions. State the domain and range.(a) NOT a function(b) NOT a function(c) IS a function $D = \{1, 5, 6\}$ $D = \{2, 3, 5\}$ $D = \{0, 1, 2, 3\}$

- $R = \{2,3\}$ $R = \{0,3,8\}$ $R = \{0,2,4,8\}$
- 3. If $f(x) = 3(x-2)^2 + 1$, determine (a) f(-1)

$$\begin{array}{ll} f(-1) & (b) \quad f(x+1) \\ f(x) = 3(x-2)^2 + 1 & f(x) = 3(x-2)^2 + 1 \\ f(-1) = 3(-1-2)^2 + 1 & f(x+1) = 3(x+1-2)^2 + 1 \\ &= 3(-3)^2 + 1 & = 3(x-1)^2 + 1 \\ &= 3(9) + 1 & = 3(x^2 - 2x + 1) + 1 \\ &= 28 & = 3x^2 - 6x + 3 + 1 \\ &= 3x^2 - 6x + 4 \end{array}$$

4. A relation g is given by $g(x) = 3x^2 + 2x - 4$. Evaluate.

(a) g(-2) $g(x) = 3x^2 + 2x - 4$ $g(-2) = 3(-2)^2 + 2(-2) - 4$ = 3(4) - 4 - 4 $g(x) = 3x^2 + 2x - 4$ $g(4a) = 3(4a)^2 + 2(4a) - 4$ $= 3(16a^2) + 8a - 4$ $= 48a^2 + 8a - 4$

5. In words, describe the transformations to the graph $f(x) = x^2$ to get g(x), if $g(x) = \frac{1}{2}(x+4)^2 - 3$.

The quadratic function $f(x) = x^2$ has been;

- horizontally translated 4 units to the left
- vertically compressed by a factor of 2
- vertically translated down 3 units.
- Graph each of the following and then state domain and range.

7. Create a first- and second-difference table for the following data.

X	У	∆y (1 st difference)	$\Delta(\Delta y)$ (2 nd difference)
-1	1		-
0	2		-6
1	-3	-5	-6
2	-14	-11	-6
3	-31	-17	
	-31		

- (b) What conclusion can be made from the first difference? *The function is NON-LINEAR.*
- (c) What conclusion can be made from the second difference? *The function is QUADRATIC.*

CHAPTER 2: The Algebra of Quadratic Expressions

- 1. Expand and simplify. (a) $3(x^2-2) - 4x(3x-7)$ $= -(a^2 - 3a - 3a + 9) + 3(25a^2 + 10a + 10a + 4)$ $= -9x^2 + 28x - 6$ (b) $-(a-3)^2 + 3(5a+2)^2$ $= -(a^2 - 3a - 3a + 9) + 3(25a^2 + 10a + 10a + 4)$ $= -(a^2 - 6a + 9) + 3(25a^2 + 20a + 4)$ $= -a^2 + 6a - 9 + 75a^2 + 60a + 12$ $= 74a^2 + 66a + 3$
- 2. Common factor each of the following polynomials.

(a)
$$12a^{3}b^{3} - 6a^{4}b^{2} + 9a^{5}b^{4}$$

 $= 3a^{3}b^{2}(4b - 2a + 3a^{2}b)$
(b) $5x^{2}(x + y) - 20y^{2}(-x - y)$
 $= 5x^{2}(x + y) + 20y^{2}(x + y)$
 $= 5(x + y)(x^{2} + 4y^{2})$

- 3. Factor fully. (a) $-2x^2 + 8x - 10$ (b) $x^2 - 4x - 32$ (c) $63m^2 - 7n^2$ $= -2(x^2 - 4x + 5)$ = (x - 8)(x + 4) $= 7(9m^2 - n^2)$ $= 7(9m^2 - n^2)$ = 7(3m - n)(3m + n)(d) $16a^2 - 24ab + 9b^2$ (e) $21x^2 - 13xy + 2y^2$ (f) $-2x^2 + 7x + 15$
 - $= (4a-3b)^{2} = (3x-y)(7x-2y) = -(2x^{2}-7x-15) = -(x-5)(2x+3)$
- 4. What are ALL possible integer values, k, such that $x^2 + kx 32$ can be factored? Need two numbers that multiply to -32 and add up to k.
 - $-32 = 1 \times (-32) \Rightarrow k = -31$ $-32 = -1 \times 32 \Rightarrow k = 31$ $-32 = 4 \times (-8) \Rightarrow k = -4$ $-32 = -4 \times 8 \Rightarrow k = 4$ $-32 = 2 \times (-16) \Rightarrow k = -14$ $-32 = -2 \times 16 \Rightarrow k = 14$ $\therefore all possible values for k are$ $\pm 4, \pm 14, \pm 31$
- 5. Factor fully.
 - (a) $3(b^2-4) + a^2(b^2-4)$ $= (b^2-4)(3+a^2)$ factor out the common bracket $= (b-2)(b+2)(3+a^2)$ (b) $18(2-x) + x^2(x-2) + 3x(x-2)$ $= -18(x-2) + x^2(x-2) + 3x(x-2)$ $= (x-2)(-18+x^2+3x)$ $= (x-2)(x^2+3x-18)$ = (x-2)(x+6)(x-3)
 - 6. Name an integer, k, such that the quadratic $6x^2 22x + k$ can be factored. Check your answer by factoring and expanding. If you aren't sure, ask the instructor.

MCF3MI

Exam Review Solutions

CHAPTER 3: Quadratic Models: Standard & Factored Forms

- 1. Write each of the following in standard form. (a) f(x) = (3x+1)(x-2) (b) f(x) = (2+3x)(x-3) $f(x) = 3x^2 - 5x - 2$ $f(x) = 2x - 6 + 3x^2 - 9x$ $= 3x^2 - 7x - 6$
- 2. Write each of the following in factored form. (a) $f(x) = x^2 - 16$ (b) $f(x) = x^2 + 3x - 18$ (c) $f(x) = 5x^2 - 20$ = (x-4)(x+4) = (x+6)(x-3) $= 5(x^2-4)$ = 5(x-2)(x+2)
- 3. Determine the zeros, the axis of symmetry, and the maximum and minimum value for each of the following quadratic equations. Show your work.

(a)
$$f(x) = 3x^2 - 3x$$

 $f(x) = 3x(x-1)$
 $\therefore x = 0 \text{ and } x = 1 \text{ are the zeros}$
 $axis of symmetry : x = \frac{1}{2}$.
 $f(\frac{1}{2}) = 3(\frac{1}{2})(\frac{1}{2}-1)$
 $= 3(\frac{1}{2})(-\frac{1}{2})$
 $= -\frac{3}{4}$
 $\therefore \min = -\frac{3}{4}$
 $\therefore \min = -\frac{3}{4}$
 $(b) f(x) = -4x^2 - 12x + 7$
 $f(x) = -(4x^2 + 12x - 7)$
 $f(x) = -(2x + 7)(2x - 1)$
 $\therefore x = -\frac{7}{2} \text{ and } x = \frac{1}{2} \text{ are the zeros}$
 $axis of symmetry : x = \frac{-7}{2} + \frac{1}{2}$
 $axis of symmetry : x = \frac{-\frac{7}{2} + \frac{1}{2}}{2}$
 $x = -\frac{-\frac{6}{2}}{2}$
 $x = -\frac{3}{2}$
 $f(-\frac{3}{2}) = -4(-\frac{3}{2})^2 - 12(-\frac{3}{2}) + 7$
 $= -4(\frac{9}{4}) + \frac{36}{2} + 7$
 $= -9 + 18 + 7$
max = 16

4. Write the corresponding quadratic equation for each of the following functions. *Leave your answer in factored form.*

(b)

The function has zeros at x = 2and x = 7 and passes through the point (0, -4)

$$y = a(x-r)(x-s)$$

$$= a(x+4)(x-3)$$

$$sub in(x, y) = (0, 4.8) to get$$

$$4.8 = a(0+4)(0-3)$$

$$4.8 = a(-12)$$

$$\frac{4.8}{-12} = a$$

$$\frac{4.8}{-120} = a$$

$$\frac{2}{5} = a$$

$$y = a(x-r)(x-s)$$

$$= a(x-2)(x-7)$$

$$sub in(x, y) = (0, -4) to get$$

$$-4 = a(0-2)(0-7)$$

$$-4 = a(14)$$

$$\frac{-4}{14} = a$$

$$\frac{-2}{7} = a$$

- 5. Can all quadratic equations be solved by factoring? Explain. NO. Some quadratics do not pass through the x-axis...meaning there are NO zeroes.
- 6. Solve for x by factoring. Show your work. (a) $4x^2 + 4x - 3 = 0$ (2x+3)(2x-1) = 0 $\therefore x = \frac{-3}{2}$ and $x = \frac{1}{2}$ (b) $x^2 + 6x - 3 = -3$ $x^2 + 6x - 3 = -3$ x = 0 x = 0 x = 0x = -6
- 7. A firecracker is fired from the ground. The height of the firecracker at a given time is modelled by the function $h(t) = -5t^2 + 40t$, where h(t) is the height in metres and t is time in seconds.

(a) When will the firecracker hit the ground?

$$h(t) = -5t(t-8)$$

$$\therefore t = 0 \quad and \quad t = 8 \quad \therefore it hits the ground after 8 sec onds.$$

(b) What is the maximum height of the firecracker?

axis of symmetry : x = 4 $h(t) = -5(t^2 - 8t + 16) + 80$ $h(4) = -5(4)^2 + 40(4)$ or $= -5(t - 4)^2 + 80$ \therefore the max = 80 metres

- (c) When does the firecracker reach a maximum height? the vertex = (4,80) ∴ the max occurs at 4 sec onds
- (d) When will the firecracker reach a height of 75 m?

 $75 = -5t^{2} + 40t$ $0 = -5t^{2} + 40t - 75$ $0 = -5(t^{2} - 8 + 15)$ 0 = -5(t - 3)(t - 5) $\therefore t = 3 \text{ and } t = 5$ $\therefore the rocket reaches 75 m at 3 sec onds (going up)$ and at 5 sec onds (when the rocket is going down).

- 8. The population of a city P(t) is modeled by the function $P(t) = 0.5t^2 + 10t + 200$, where P(t) is the population in thousands and t is time in years. NOTE: t = 0 represents the year 2000. According to the model,
 - (a) in what year will the population reach 312 000? $312 = 0.5t^2 + 10t + 200$

$$0 = 0.5t^{2} + 10t - 112$$

$$0 = 0.5(t^{2} + 20t - 224)$$

$$0 = 0.5(t - 8)(t + 28)$$

$$t = 8 \quad or \quad t = -28$$

The population reaches 312 000 in 2008 and in 1972

(b) Will the population reach over 2 million people by the year 2050? Show your work. $sub \ t = 50$

$$P(50) = 0.5(50)^2 + 10(50) + 200$$
$$= 1950$$

So the population is 1950000

 $< 2 \, million$

:. No. The population will not exceed 2 million by 2050.

MCF3MI

Exam Review Solutions

CHAPTER 4: Quadratic Models: Standard & Vertex Forms

- 1. Write the function $f(x) = 2(x+3)^2 2$ in standard form. f(x) = 2(x+3)(x+3) - 2 $= 2(x^2 + 6x + 9) - 2$ $= 2x^2 + 12x + 18 - 2$ $= 2x^2 + 12x + 16$
- 2. For the function $f(x) = -(x-4)^2 + 1$, complete the table:

Vertex	(4, 1)
Axis of Symmetry	x = 4
Max/Min Value	max = 1
Domain	$\{x \in R\}$
Range	$\{y \in R \mid y \le 1\}$

3.

Determine the equation of the parabola .	$y = a(x-h)^{2} + k$ $y = a(x-3)^{2} + 3$ $11 = a(1-3)^{2} + 3$ $11 = a(-2)^{2} + 3$ 11 - 3 = 4a
	8 = 4a 2 = a $\therefore y = 2(x-3)^2 + 3$

4. Write each function in vertex form and state the vertex. (a) $f(x) = -x^2 + 6x + 7$ (b) $g(x) = 2x^2 - 3x + 3.5$

$$g(x) = 2(x^{2} - \frac{3}{2}x) + 3.5$$

$$f(x) = -(x^{2} - 6x) + 7$$

$$= -(x^{2} - 6x + 9) + 9 + 7$$

$$= -(x^{2} - 6x + 9) + 9 + 7$$

$$= -(x - 3)^{2} + 16$$

$$\therefore vertex = (3, 16)$$

$$g(x) = 2(x^{2} - \frac{3}{2}x) + 3.5$$

$$= 2(x^{2} - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}) + 3.5$$

$$= 2(x^{2} - \frac{3}{2}x + \frac{9}{16}) - \frac{18}{16} + 3.5$$

$$= 2(x - \frac{3}{4})^{2} + 2.375$$

$$\therefore vertex = (0.75, 2.375)$$

5. The cost, C(n), of operating a cement-mixing truck is modeled by the function $C(n) = 2.2n^2 - 66n + 700$, where *n* is the number of minutes the truck is running. What is the minimum cost of operating the truck? Show your work.

$$C(n) = 2.2(n^{2} - 30n) + 700$$

= 2.2(n^{2} - 30n + 225 - 225) + 700
= 2.2(n^{2} - 30n + 225) - 495 + 700
= 2.2(n - 15)^{2} + 205
 \therefore min = 205

6. Solve using the quadratic formula. State your answers correct to 2 decimal places.

(a)
$$8x^{2}-6x+1=0$$

 $8x^{2}-6x+1=0$
 $x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$
 $= \frac{6 \pm \sqrt{b^{2}-4(8)(1)}}{2(8)}$
 $= \frac{6 \pm \sqrt{36-32}}{16}$
 $= \frac{6 \pm \sqrt{4}}{16}$
 $\therefore x = \frac{6+2}{16}$ and $x = \frac{6-2}{16}$
 $x = \frac{1}{2}$ and $x = \frac{1}{4}$
(b) $x^{2}+3x=14$
 $x^{2}+3x=14=0$
 $x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$
 $= \frac{-3 \pm \sqrt{(3)^{2}-4(1)(-14)}}{2(1)}$
 $= \frac{-3 \pm \sqrt{9+56}}{2}$
 $\therefore x = \frac{-3 \pm \sqrt{65}}{2}$
 $\therefore x = \frac{-3 \pm \sqrt{65}}{2}$ and $x = \frac{-3 \pm \sqrt{65}}{2}$
 $\therefore x = \frac{-3 \pm \sqrt{65}}{2}$ and $x = \frac{-3 \pm \sqrt{65}}{2}$
 $x = 2.53$ and $x = -3.53$

7. A theatre company's profit can be modeled by the function $P(x) = -60x^2 + 700x - 1000$ where x is the price of a ticket in dollars. What is the break-even price of the tickets? Set P(x) = 0

$$0 = -60x^{2} + 700x - 1000$$

a = -60, b = 700, c = -1000

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-700 \pm \sqrt{700^2 - 4(-60)(-1000)}}{2(-60)}$$

$$= \frac{-700 \pm \sqrt{250000}}{-120}$$

$$= \frac{-700 \pm 500}{-120}$$

$$\therefore x = \frac{-700 \pm 500}{-120} \quad and \quad x = \frac{-700 - 500}{-120}$$

$$1.67 = 10.0$$

NOTE: A "break even" point means that you neither made money nor lost money. ie.... P(x) = 0

The break even points occur when tickets are sold for \$1.67 and \$10.

- 8. A model rocket is launched into the air. Its height, h(t), in metres after t seconds is $h(t) = -5t^2 + 40t + 2$.
 - (a) When is the rocket at a height of 62 m (correct to 2 decimal places)?

 $62 = -5t^{2} + 40t + 2$ $0 = -5t^{2} + 40t + 2 - 62$ $0 = -5t^{2} + 40t - 60$ $0 = -5(t^{2} - 8t + 12)$ 0 = -5(t - 6)(t - 2) $\therefore t = 6 \quad and \quad t = 2$

The rocket reaches 62m at 2 seconds (going up) and at 6 seconds (coming back down).

- (b) What is the height of the rocket after 6 seconds? 62 metres. (see part (a) above)
- (c) What is the maximum height of the rocket? $h(t) = -5(t^2 - 8t) + 2$

The maximum height of the rocket is 82 metres at 4 seconds.

9. Without solving, determine the number of solutions of each equation. Show your work for full marks.

(a) $x^2 - 5x + 9 = 0$	(b) $3x^2 - 5x - 9 = 0$	(c) $16x^2 - 8x + 1 = 0$
$x^2 - 5x + 9 = 0$	$3x^2 - 5x - 9 = 0$	$16x^2 - 8x + 1 = 0$
$b^2 - 4ac = (-5)^2 - 4(1)(9)$	$b^2 - 4ac = (-5)^2 - 4(3)(-9)$	$b^2 - 4ac = (-8)^2 - 4(16)(1)$
= 25 - 36	= 25 + 108	= 64 - 64
= -11	=133	= 0
< 0	> 0	:. ONE real root
:. ZERO real roots	:. TWO real roots	

MCF3MI

Exam Review Solutions

CHAPTER 5: Trigonometry & Acute Angles

- 1. Use a calculator to evaluate to four decimal places.
 - (a) $\cos 11^{\circ}$ (b) $\tan 83^{\circ}$ (c) $\sin 39^{\circ}$ =0.9816 =8.1443 =0.6293
- 2. Use a calculator to find θ to the nearest degree. (a) $\cos \theta = 0.3862$ (b) $\tan \theta = 1.2375$ $\theta = 67^{\circ}$ $\theta = 51^{\circ}$
- 3. Determine all the interior angles in ΔPQR correct to the nearest degree.

4. Solve ΔJKL where j = 17.0 cm, k = 18.0 cm, and l = 21.0 cm. Include a diagram.

$$17 18
\sin J = \frac{17 \sin 55.3^{\circ}}{18} \therefore \ \angle L = 180 - 55.3 - 50.9
= 73.9^{\circ} (AST)
dual display= 50.9^{\circ}$$

5. A 2.7 *m* ladder can be used safely only at an angle of 70° with the horizontal. How high, to the nearest metre, can the ladder reach? Include a diagram.

6. A surveyor wants to calculate the distance *BC* across a river. He selects a position, *A*, so that *BA* is 91 *m*, and he measures $\angle ABC$ and $\angle BAC$ as 34° and 51°, respectively. Calculate the distance *BC* to the nearest tenth of a metre.

7. Two sides of a parallelogram measure 6.5 cm and 8.0 cm. The longer diagonal is 11.3 cm long. How long, to the nearest centimeter, is the other diagonal? (Include a diagram).

Use the sum of the interior angles of a quadrilateral to find angle B. A and C are both 101.897 360 = A + B + C + D 360 = 101.897 + B + 101.897 + D 156.206 = B + DAnd since B and D are equal angles, they are $156.206/2 = 78.103^{\circ}$.

Therefore, the other diagonal is approximately 9cm long.

8. A temporary support cable for a radio antenna is 110 m long and has an angle of elevation of 30° . Two other support cables are already attached, each at an angle of elevation of 70° . How long, to the nearest centimetre, is each of the shorter cables?

 $\frac{\sin 110^{\circ}}{110} = \frac{\sin 30^{\circ}}{x}$ $x = \frac{110 \sin 30^{\circ}}{\sin 110^{\circ}}$ x = 58.5m

Each of the shorter cables is approximately 58. 5 metres long.

CHAPTER 6: Sinusoidal Functions

1. Information about the movement of a Ferris wheel is shown below.

(a) How long does it take for the Ferris wheel to make five complete rotations?

1 complete turn takes 40 seconds 5 complete turns takes 200 seconds

(b) What is the height of the axle supporting the Ferris wheel?

axis = 8 m

(c) Calculate the speed at which the wheel is rotating. Circumference of the wheel = $2\pi r$

$$= 2\pi(6)$$

= 37.68 m

Speed = distance/time distance travelled is circumference of the wheel = 37.68/40 = 0.942 m/s

2. Given the following graph, complete the given analysis.

Amplitude: 1

Period: 360°

Range: $\{y \in R \mid -3 \le y \le -1\}$

Number of cycles from -540 to 540: 3

Axis: y = -2

3. Describe the transformation $g(x) = -2\sin x + 1$ and then sketch it.

The sinusoidal curve $y = \sin x$ has been:

- vertically stretched by a factor of 2
- reflected in the x-axis
- vertically translated up 1 unit
- 4. What is the range for each of the following sinusoidal functions?
 - (a) $f(x) = 0.5 \sin x 4$ $\{y \in R \mid -4.5 \le y \le -3.5\}$ (b) $f(x) = \sin(x - 180^{\circ})$ $\{y \in R \mid -1 \le y \le +1\}$
- 5. The function $f(x) = \sin x$ has been translated 60° to the right, vertically stretched by a factor of 3 and reflected in the x-axis. Write the new equation.

 $y = -3\sin(x - 60^\circ)$

6. Write the equation for the sinusoidal function.(a) (b)

7. Complete the chart below.

See the teacher

Sinusoidal Function	Maximum	Minimum	
(a) $f(x) = 3\sin x$	3	-3	
(b) $f(x) = -\sin(x - 45^\circ) + 6$	7	5	
(c) $f(x) = -0.25 \sin x - 1.5$	-1.25	-1.75	

See the teacher

8. The height of a Ferris wheel is modeled by the function $h(x) = 6\sin(x-45^\circ)+7$, where h(x) is in metres and x is the number of degrees the wheel has rotated from the boarding position of a rider.

.

CHAPTER 7: Exponential Functions

1. Write as a single power. Express answers with positive exponents. DO NOT EVALUATE.

(a)
$$\frac{4^{3} \times 4 \times 4^{2}}{= 4^{6}}$$

(b) $\frac{5(5^{3})}{= 5^{4}}$
(c) $= \frac{(-4)^{9}}{(-4)^{18}}$
 $= (-4)^{-9}$
 $= \frac{1}{(-4)^{9}}$
 $= (-4)^{-9}$
 $= \frac{1}{(-4)^{9}}$
(d) $= \frac{3^{4}}{3^{6}}$
 $= \frac{1}{3^{2}}$
(e) $= \frac{20^{-8}}{20^{8}}$
 $= \frac{1}{20^{16}}$
(f) $= \left(\frac{1}{9}\right)^{2}$
 $= \frac{1}{9^{2}}$

2. Evaluate WITHOUT using a calculator.

$$256^{\frac{-5}{4}} = (\sqrt[4]{256})^{-5} \qquad (-\frac{1}{2})^{3} + 2^{-3} \qquad 4^{-1} + 4^{0} + 4^{2}$$
(a) $= 4^{-5} \qquad (b) = -\frac{1}{8} + \frac{1}{8} \qquad (c) = \frac{1}{4} + 1 + 16$

$$= \frac{1}{4^{-5}} = 0 \qquad = 17.25$$

$$= \frac{1}{1024} \qquad (\frac{27}{64})^{\frac{-1}{3}} \qquad (f) = \sqrt{16^{-3}} \qquad (e) = (\frac{64}{27})^{\frac{1}{3}} \qquad (f) = \sqrt{12}$$

$$= 4^{-3} \qquad = \frac{\sqrt[3]{64}}{\sqrt[3]{27}} \qquad = \frac{4}{3}$$

3. Complete the table.

Exponential Form	Radical Form	Evaluation of Expression
814	∜81	3
27 ⁴ / ₃	<u>∛</u> 27 ⁴	81
7776 ¹ 5	∜7776	6
4096 ^{0 75}	∜ <u>4096</u> ³	512

4. Use your calculator to evaluate each expression. Express answers to two decimals.

(a)
$$256^{0.66} = 38.85$$
 (b) $15^{\frac{3}{2}} = 0.02$ (c) $\sqrt[1]{3.7} = 1.13$ (d) $\sqrt[4]{-99}$ not possible

5. Complete the table.

Function	Exponential Growth or Decay?	Initial Value (y-intercept)	Growth/Decay rate
$P(n) = 200(1 - 0.032)^n$	decay	200	3.2%
$A(x) = (2)^x$	growth	1	100%
$Q(x) = 0.85 \left(0.77\right)^x$	decay	0.85	23%

6. Calculate finite differences to classify each function as linear, quadratic, exponential or none of those.
 (a)

x	<u>у</u>	Δy	Δ(Δy)
-4	47	-21	
-3	26	-15	6
-2	11	-9	6
-1	2	-3	6
0	-1	-3	

b)			
Х	у	∆у	Δ(Δy)
-1	0.125		-
		0.125	
0	0.25		1.625
		1.75	
1	2		4.25
		6	
2	8		18
		24	
3	32		
			0.500

Conclusion quadratic Conclusion none

Formulas:

$$P = P_0(1+r)^n \qquad P = P_0(1-r)^n \qquad I(d) = I_0(1+r)^d \qquad N(d) = N_0(1+r)^d$$

- 7. Greg invests \$750 in a bond that pays 4.3% per year.
 - (a) Calculate, to the nearest penny, what Greg's total amount will be after 4 years. $A = 750(1.043)^4$

A = 887.56 \therefore the amount will be \$887.56

(b) How much money did \$750 earn in four years? 887.56 - 750 = 137.56 ∴ *it earned* \$137.56 (c) If Greg is planning to enter University in 2018, would his money have doubled by then? 2018 is 8 years from now

> $A = 750(1.043)^{8}$ $A = 1050.35 \qquad \therefore he \ did \ not \ get \ \$1500, \ so \ his \ money \ did \ not \ double$

- 8. A police diver is searching a harbour for stolen goods. The equation that models the intensity of light per metre of depth is $I(n) = 100(0.92)^n$.
 - (a) At what rate does the light diminish per metre? 1-r=0.92r=0.08 \therefore the light diminishes by 8% pe

(b) Determine the amount of sunlight the diver will have at a depth of 18 m, relative

to the intensity at the surface.

 $I(18) = 100(0.92)^{18}$

I(18) = 22.29 \therefore the light is 22.29% as intense as it was at the surface

9. Ryan purchases a used vehicle for \$11, 899. If the vehicle depreciates at a rate of 13% yearly, what will the car be worth, to the nearest dollar, in ten years? Show your work.

 $P(10) = 11899(1 - 0.13)^{10}$ P(10) = 2955.99 \therefore it will be worth \$2955.99 in 10 years

- 10. After being filled, a basketball loses 3.2% of its air every day. The initial amount of air in the ball was 840 cm^3
 - (a) Write an equation to model this situation.

Let P(t) represent the final amount of air left in the ball after t days $P(t) = 840(1-0.032)^{t}$

(b) Determine the volume after 4 days.

 $P(4) = 840(0.968)^4$

P(4) = 737.53 \therefore there is 737.53 cm^3 of air left in the ball

(c) Will this model be valid after 6 weeks? Explain.

We can still use the equation for t = 42 (6 weeks = 42 days). However, the ball probably won't be losing air at the same rate (it will be losing it at a much slower rate that it was when it was first pumped up) so the equation will not model the situation accurately after so long.

11. List 4 characteristics of an exponential function.

Consider the function $f(x) = b^x$, b is positive and not equal to 1

- domain is $\{x \in R\}$, range is $\{y \in R | y > 0\}$
- if b>1, the greater the value, the faster the growth
- *if* 0<b<1, *the lesser the value, the faster the decay*
- horizontal asymptote is y=0 (the x-axis)
- y-intercept is 1

First and second differences are related by a multiplication pattern.

EXTRA QUESTIONS: Chapter 7 p. 526 # 1 – 8

CHAPTER 8: Financial Problems Involving Exponential Functions

Prinicpal (\$)	Annual Interest Rate (%)	Time	Simple Interest Paid (\$)	Amount
400	7.25	5 years	145	545
8098.22	$3\frac{3}{4}\%$	13 months	328.99	8427.21
760.60	5.5	4.3 years	180.00	940.60

1. Complete the table (to the nearest penny).

12. Kurtis earned \$279.40 in simple interest by investing a principal of \$400 in a Treasury bill. If the interest rate was 3.35%/a, for how many years did he have his investment?

$$I = \Pr t$$

279.40 = (400)(0.0335)t279.40

$$\frac{279.40}{(400)(0.0335)} = t$$

$$20.85 = t$$

Therefore, he had his investment for almost 21 years.

13. Complete the table (correct to 2 decimal places).

Principal (\$)	Annual Interest Rate (%)	Years Invested	Compounding Period	Amount (\$)	Interest Earned (\$)
350	2.75	10	monthly	460.64	110.64
2500	8.5	2	semi-annually	2952.87	452.87
267.00	$2\frac{1}{4}\%$	7	annually	315.50	48.50
12 000	3.24%	7	weekly	15 053.88	3053.88

14. Calculate the amount you would end up with if you invested \$2500 at $4\frac{1}{2}$ % /a compounded semi-annually for 8 years?

$$P = 2500$$

$$i = \frac{0.045}{2} = 0.0225$$

$$n = 2 \times 8 = 16$$

$$A = P(1+i)^{n}$$

$$A = 2500(1.0225)^{16}$$

$$A = 3569.05$$

Therefore, you would end up with \$3569.05

15. Johnny borrowed money from a friend. The interest rate was 5.75%/a compounded monthly. If Johnny will repay \$5667 over the next 6 years. How much money did Johnny borrow? A = 5667

> $i = \frac{0.0575}{12} = 0.004791666$ $n = 6 \times 12 = 72$ $P = A(1+i)^{-n}$ $P = 5667(1.004791666)^{-72}$ P = 4016.79Therefore, Johnny borrowed \$4016.79

EXTRA QUESTIONS – Chapter 8 p. 526 #9,10