EXAM REVIEW SOLUTIONS

CHAPTER 1: Introduction to Quadratic Functions

1. State the domain and range for the following functions.
(a) $D=\{x \in R\}$
(b) $D=\{x \in R\}$
$R=\{y \in R \mid y \leq 1\}$
$R=\{y \in R\}$
2. Determine whether the following relations are functions. State the domain and range.
(a) NOT a function
(b) NOT a function
$D=\{1,5,6\}$
$R=\{2,3\}$
$D=\{2,3,5\}$
(c) IS a function

$$
\begin{aligned}
& D=\{0,1,2,3\} \\
& R=\{0,2,4,8\}
\end{aligned}
$$

3. If $f(x)=3(x-2)^{2}+1$, determine
(a) $\quad f(-1)$
(b) $f(x+1)$
$f(x)=3(x-2)^{2}+1$
$f(-1)=3(-1-2)^{2}+1$
$=3(-3)^{2}+1$
$=3(9)+1$
$=28$

$$
\begin{aligned}
f(x) & =3(x-2)^{2}+1 \\
f(x+1) & =3(x+1-2)^{2}+1 \\
& =3(x-1)^{2}+1 \\
& =3\left(x^{2}-2 x+1\right)+1 \\
& =3 x^{2}-6 x+3+1 \\
& =3 x^{2}-6 x+4
\end{aligned}
$$

4. A relation g is given by $g(x)=3 x^{2}+2 x-4$. Evaluate.
(a) $g(-2)$
(b) $g(m)$
(c) $g(4 a)$

$$
\begin{aligned}
g(x) & =3 x^{2}+2 x-4 \\
g(-2) & =3(-2)^{2}+2(-2)-4 \\
& =3(4)-4-4 \\
& =6
\end{aligned}
$$

$$
g(x)=3 x^{2}+2 x-4
$$

$$
g(m)=3 m^{2}+2 m-4
$$

$$
\begin{aligned}
g(x) & =3 x^{2}+2 x-4 \\
g(4 a) & =3(4 a)^{2}+2(4 a)-4 \\
& =3\left(16 a^{2}\right)+8 a-4 \\
& =48 a^{2}+8 a-4
\end{aligned}
$$

5. In words, describe the transformations to the graph $f(x)=x^{2}$ to get $g(x)$, if $g(x)=\frac{1}{2}(x+4)^{2}-3$.

The quadratic function $f(x)=x^{2}$ has been;

- horizontally translated 4 units to the left
- vertically compressed by a factor of 2
- vertically translated down 3 units.
- Graph each of the following and then slate domain and range.

6. (a) $y=\frac{1}{2}(x+3)^{2}$

(b) $g(x)=-3(x-1)^{2}+2$

$$
\begin{gathered}
\mathrm{D}=\{x \in R\} \\
\mathrm{R}=\{y \in R \mid y \leq 2\} \\
\mathrm{D}=\{x \in R\} \\
\mathrm{R}=\{y \in R \mid y=2\}
\end{gathered}
$$

(c) $y=-2$

7. Create a first- and second-difference table for the following data.

\mathbf{x}	\mathbf{y}	$\Delta y\left(1^{\text {st }}\right.$ difference $)$	$\Delta(\Delta y)$ (2 ${ }^{\text {nd }}$ difference $)$
-1	1	1	
0	2	-5	-6
1	-3	-11	-6
2	-14	-17	-6
3	-31		

(b) What conclusion can be made from the first difference?

The function is NON-LINEAR.
(c) What conclusion can be made from the second difference?

The function is QUADRATIC.

CHAPTER 2: The Algebra of Quadratic Expressions

1. Expand and simplify.
(a) $3\left(x^{2}-2\right)-4 x(3 x-7)$
(b) $-(a-3)^{2}+3(5 a+2)^{2}$
$=-\left(a^{2}-3 a-3 a+9\right)+3\left(25 a^{2}+10 a+10 a+4\right)$
$=3 x^{2}-6-12 x^{2}+28 x$
$=-9 x^{2}+28 x-6$
$=-\left(a^{2}-6 a+9\right)+3\left(25 a^{2}+20 a+4\right)$
$=-a^{2}+6 a-9+75 a^{2}+60 a+12$
$=74 a^{2}+66 a+3$
2. Common factor each of the following polynomials.
(a) $12 a^{3} b^{3}-6 a^{4} b^{2}+9 a^{5} b^{4}$
(b) $5 x^{2}(x+y)-20 y^{2}(-x-y)$
$=5 x^{2}(x+y)+20 y^{2}(x+y)$
$=3 a^{3} b^{2}\left(4 b-2 a+3 a^{2} b\right)$
$=5(x+y)\left(x^{2}+4 y^{2}\right)$
3. Factor fully.
(a) $-2 x^{2}+8 x-10$
(b) $x^{2}-4 x-32$ $=(x-8)(x+4)$
(c) $63 m^{2}-7 n^{2}$
$=7\left(9 m^{2}-n^{2}\right)$
$=7(3 m-n)(3 m+n)$
$=-2\left(x^{2}-4 x+5\right)$
(d) $16 a^{2}-24 a b+9 b^{2}$
(e) $21 x^{2}-13 x y+2 y^{2}$
(f) $-2 x^{2}+7 x+15$
$=-\left(2 x^{2}-7 x-15\right)$
$=(3 x-y)(7 x-2 y)$

$$
=-(x-5)(2 x+3)
$$

4. What are ALL possible integer values, k, such that $x^{2}+k x-32$ can be factored?

Need two numbers that multiply to -32 and add up to k.

$$
\begin{aligned}
& -32=1 \times(-32) \Rightarrow k=-31 \\
& -32=-1 \times 32 \Rightarrow k=31 \\
& -32=4 \times(-8) \Rightarrow k=-4 \\
& -32=-4 \times 8 \Rightarrow k=4 \\
& -32=2 \times(-16) \Rightarrow k=-14 \\
& -32=-2 \times 16 \Rightarrow k=14 \\
& \therefore \text { all possible values for } k \text { are }
\end{aligned}
$$

$$
\pm 4, \pm 14, \pm 31
$$

5. Factor fully.
(a) $3\left(b^{2}-4\right)+a^{2}\left(b^{2}-4\right)$
(b) $18(2-x)+x^{2}(x-2)+3 x(x-2)$

$$
\begin{aligned}
& =\left(b^{2}-4\right)\left(3+a^{2}\right) \quad \text { factor oult the common bracket } \\
& =(b-2)(b+2)\left(3+a^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-18(x-2)+x^{2}(x-2)+3 x(x-2) \\
& =(x-2)\left(-18+x^{2}+3 x\right) \\
& =(x-2)\left(x^{2}+3 x-18\right) \\
& =(x-2)(x+6)(x-3)
\end{aligned}
$$

6. Name an integer, k, such that the quadratic $6 x^{2}-22 x+k$ can be factored.

Check your answer by factoring and expanding. If you aren't sure, ask the instructor.

MCF3MI

Exam Review Solutions

CHAPTER 3: Quadratic Models: Standard \& Factored Forms

1. Write each of the following in standard form.
(a) $f(x)=(3 x+1)(x-2)$
$f(x)=3 x^{2}-5 x-2$
(b) $f(x)=(2+3 x)(x-3)$
$f(x)=2 x-6+3 x^{2}-9 x$
$=3 x^{2}-7 x-6$
2. Write each of the following in factored form.
(a) $f(x)=x^{2}-16$ $=(x-4)(x+4)$
(b) $f(x)=x^{2}+3 x-18$
$=(x+6)(x-3)$
(c) $f(x)=5 x^{2}-20$

$$
=5\left(x^{2}-4\right)
$$

$$
=5(x-2)(x+2)
$$

3. Determine the zeros, the axis of symmetry, and the maximum and minimum value for each of the following quadratic equations. Show your work.
(a) $f(x)=3 x^{2}-3 x$
(b) $f(x)=-4 x^{2}-12 x+7$
$f(x)=-\left(4 x^{2}+12 x-7\right)$

$$
f(x)=3 x(x-1)
$$

$\therefore x=0$ and $x=1$ are the zeros

$$
f(x)=-(2 x+7)(2 x-1)
$$ axis of symmetry: $x=\frac{1}{2}$.

$$
\therefore x=\frac{-7}{2} \text { and } x=\frac{1}{2} \text { are the zeros }
$$

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =3\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right) \\
& =3\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right) \\
& =-\frac{3}{4}
\end{aligned}
$$

$$
\text { axis of symmetry: } x=\frac{\frac{-7}{2}+\frac{1}{2}}{2}
$$

$$
x=\frac{\frac{-6}{2}}{2}
$$

$$
x=-\frac{3}{2}
$$

$$
\therefore \min =-\frac{3}{4}
$$

$$
f\left(-\frac{3}{2}\right)=-4\left(-\frac{3}{2}\right)^{2}-12\left(-\frac{3}{2}\right)+7
$$

$$
=-4\left(\frac{9}{4}\right)+\frac{36}{2}+7
$$

$$
=-9+18+7
$$

$$
\max =16
$$

4. Write the corresponding quadratic equation for each of the following functions. Leave your answer in factored form.
(a)

$$
\begin{aligned}
y & =a(x-r)(x-s) \\
& =a(x+4)(x-3)
\end{aligned}
$$

$\operatorname{subin}(x, y)=(0,4.8)$ to get
$4.8=a(0+4)(0-3)$
$4.8=a(-12)$
$\frac{4.8}{-12}=a$
$\therefore y=\frac{-2}{5}(x+4)(x-3)$
$\frac{48}{-120}=a$
$\frac{2}{-5}=a$
(b)

The function has zeros at $x=2$ and $x=7$ and passes through the point $(0,-4)$

$$
\begin{aligned}
y & =a(x-r)(x-s) \\
& =a(x-2)(x-7)
\end{aligned}
$$

sub in $(x, y)=(0,-4)$ to get
$-4=a(0-2)(0-7)$
$-4=a(14)$
$\frac{-4}{14}=a$
$\therefore y=\frac{-2}{7}(x-2)(x-7)$
$\frac{-2}{7}=a$
5. Can all quadratic equations be solved by factoring? Explain.

NO. Some quadratics do not pass through the x-axis....meaning there are NO zeroes.
6. Solve for x by factoring. Show your work.
(a) $4 x^{2}+4 x-3=0$
(b) $x^{2}+6 x-3=-3$
$x^{2}+6 x-3=-3$
$(2 x+3)(2 x-1)=0$
$\therefore x=\frac{-3}{2}$ and $x=\frac{1}{2}$

$$
\begin{aligned}
& x^{2}+6 x-3+3=0 \\
& x^{2}+6 x=0 \\
& x(x+6)=0 \\
& \therefore x=0 \text { and } x=-6
\end{aligned}
$$

7. A firecracker is fired from the ground. The height of the firecracker at a given time is modelled by the function $h(t)=-5 t^{2}+40 t$, where $h(t)$ is the height in metres and l is time in seconds.
(a) When will the firecracker hit the ground?

$$
\begin{aligned}
h(t)= & -5 t(t-8) \\
& \therefore t=0 \text { and } t=8 \quad \therefore \text { it hits the ground after } 8 \text { sec onds. }
\end{aligned}
$$

(b) What is the maximum height of the firecracker?

$$
\begin{aligned}
& \text { axis of symmetry: } x=4 \\
& \begin{aligned}
h(4) & =-5(4)^{2}+40(4) \quad \text { or } \\
& =80
\end{aligned} \\
& h(t)=-5\left(l^{2}-8 t+16\right)+80 \\
& =-5(t-4)^{2}+80 \\
& \therefore \text { the } \text { max }=80 \text { metres }
\end{aligned}
$$

(c) When does the firecracker reach a maximum height?
the vertex $=(4,80)$
\therefore the max occurs at 4 sec onds
(d) When will the firecracker reach a height of 75 m ?

$$
\begin{aligned}
& 75=-5 t^{2}+40 t \\
& 0=-5 t^{2}+40 t-75 \\
& 0=-5\left(t^{2}-8+15\right) \\
& 0=-5(t-3)(t-5) \\
& \therefore t=3 \text { and } t=5
\end{aligned}
$$

\therefore the rocket reaches 75 m at 3 sec onds (going $u p$)
and at 5 sec onds (whenthe rocket is going down).
8. The population of a city $P(t)$ is modeled by the function $P(t)=0.5 t^{2}+10 t+200$, where $P(t)$ is the population in thousands and t is time in years. NOTE: $t=0$ represents the year 2000. According to the model,
(a) in what year will the population reach 312000 ?

$$
\begin{aligned}
& 312=0.5 t^{2}+10 t+200 \\
& 0=0.5 t^{2}+10 t-112 \\
& 0=0.5\left(t^{2}+20 t-224\right) \\
& 0=0.5(t-8)(t+28) \\
& t=8 \text { or } t=-28
\end{aligned}
$$

The population reaches 312000 in 2008 and in 1972
(b) Will the population reach over 2 million people by the year 2050? Show your work.
sub $t=50$

$$
\begin{aligned}
P(50)= & 0.5(50)^{2}+10(50)+200 \\
& =1950
\end{aligned}
$$

Sothe populationis 1950000

$$
<2 \text { million }
$$

\therefore No. The population will not exceed 2 million by 2050 .

CHAPTER 4: Quadratic Models: Standard \& Vertex Forms

1. Write the function $f(x)=2(x+3)^{2}-2$ in standard form.

$$
\begin{aligned}
f(x) & =2(x+3)(x+3)-2 \\
& =2\left(x^{2}+6 x+9\right)-2 \\
& =2 x^{2}+12 x+18-2 \\
& =2 x^{2}+12 x+16
\end{aligned}
$$

2. For the function $f(x)=-(x-4)^{2}+1$, complete the table:

Vertex	$(4,1)$
Axis of Symmetry	$x=4$
Max/Min Value	$\max =1$
Domain	$\{x \in R\}$
Range	$\{y \in R \mid y \leq 1\}$

3.

4. Write each function in vertex form and state the vertex.
(a) $f(x)=-x^{2}+6 x+7$
(b) $g(x)=2 x^{2}-3 x+3.5$

$$
\begin{aligned}
& g(x)=2\left(x^{2}-\frac{3}{2} x\right)+3.5 \\
&=2\left(x^{2}-\frac{3}{2} x+\frac{9}{16}-\frac{9}{16}\right)+3.5 \\
&=2\left(x^{2}-\frac{3}{2} x+\frac{9}{16}\right)-\frac{18}{16}+3.5 \\
&=2\left(x-\frac{3}{4}\right)^{2}+2.375 \\
& \therefore \text { vertex }=(0.75,2.375)
\end{aligned}
$$

5. The cost, $C(n)$, of operating a cement-mixing truck is modeled by the function
$C(n)=2.2 n^{2}-66 n+700$, where n is the number of minutes the truck is running.
What is the minimum cost of operating the truck? Show your work.

$$
\begin{aligned}
C(n) & =2.2\left(n^{2}-30 n\right)+700 \\
& =2.2\left(n^{2}-30 n+225-225\right)+700 \\
& =2.2\left(n^{2}-30 n+225\right)-495+700 \\
& =2.2(n-15)^{2}+205
\end{aligned}
$$

$$
\therefore \min =205
$$

6. Solve using the quadratic formula. State your answers correct to 2 decimal places.
(a) $8 x^{2}-6 x+1=0$

$$
\begin{aligned}
8 & x^{2}-6 x+1=0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{6 \pm \sqrt{(-6)^{2}-4(8)(1)}}{2(8)} \\
= & \frac{6 \pm \sqrt{36-32}}{16} \\
= & \frac{6 \pm \sqrt{4}}{16} \\
\therefore & x=\frac{6+2}{16} \quad \text { and } \quad x=\frac{6-2}{16} \\
& x=\frac{1}{2} \quad \text { and } \quad x=\frac{1}{4}
\end{aligned}
$$

(b) $x^{2}+3 x=14$
$x^{2}+3 x=14$
$x^{2}+3 x-14=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
=\frac{-3 \pm \sqrt{(3)^{2}-4(1)(-14)}}{2(1)}
$$

$$
=\frac{-3 \pm \sqrt{9+56}}{2}
$$

$$
=\frac{-3 \pm \sqrt{65}}{2}
$$

$$
\therefore x=\frac{-3+\sqrt{65}}{2} \quad \text { and } \quad x=\frac{-3-\sqrt{65}}{2}
$$

$$
x \square 2.53 \quad \text { and } \quad x \square-5.53
$$

7. A theatre company's profit can be modeled by the function $P(x)=-60 x^{2}+700 x-1000$ where x is the price of a ticket in doliars. What is the break-even price of the tickets?

$$
\begin{aligned}
& \text { Set } P(x)=0 \\
& \begin{aligned}
0 & =-60 x^{2}+700 x-1000 \\
a & =-60, b=700, c=-1000 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-700 \pm \sqrt{700^{2}-4(-60)(-1000)}}{2(-60)} \\
& =\frac{-700 \pm \sqrt{250000}}{-120} \\
& =\frac{-700 \pm 500}{-120} \\
\therefore x & =\frac{-700+500}{-120} \text { and } \quad x=\frac{-700-500}{-120} \\
& =1.67
\end{aligned}
\end{aligned}
$$

NOTE: A "break even" point means that you neither made money nor lost money. ie.... $P(x)=0$
8. A model rocket is launched into the air. Its height, $h(t)$, in metres after t seconds is $h(t)=-5 t^{2}+40 t+2$.
(a) When is the rocket at a height of 62 m (correct to 2 decimal places)?

$$
\begin{aligned}
& 62=-5 t^{2}+40 t+2 \\
& 0=-5 t^{2}+40 t+2-62 \\
& 0=-5 t^{2}+40 t-60 \\
& 0=-5\left(t^{2}-8 t+12\right) \\
& 0=-5(t-6)(t-2) \\
& \therefore t=6 \text { and } t=2
\end{aligned}
$$

The rocket reaches 62 m at 2 seconds (going up) and at 6 seconds (coming back down).
(b) What is the height of the rocket after 6 seconds?

62 metres. (see part (a) above)
(c) What is the maximum height of the rocket?

$$
\begin{aligned}
h(t) & =-5\left(t^{2}-8 t \quad\right)+2 \\
& =-5\left(t^{2}-8 t+16-16\right)+2 \\
& =-5\left(t^{2}-8 t+16\right)+80+2 \\
& =-5(t-4)^{2}+82
\end{aligned}
$$

The maximum height of the rocket is 82 metres at 4 seconds.
9. Without solving, determine the number of solutions of each equation. Show your work for full marks.
(a) $x^{2}-5 x+9=0$

$$
\begin{aligned}
& x^{2}-5 x+9=0 \\
& b^{2}-4 a c=(-5)^{2}-4(1)(9) \\
& =25-36 \\
& =-11 \\
& \text { <0 }
\end{aligned}
$$

(b) $3 x^{2}-5 x-9=0$
$3 x^{2}-5 x-9=0$
$b^{2}-4 a c=(-5)^{2}-4(3)(-9)$
$=25+108$
$=133$
>0
(c) $16 x^{2}-8 x+1=0$
$16 x^{2}-8 x+1=0$
$b^{2}-4 a c=(-8)^{2}-4(16)(1)$
$=64-64$
$=0$
\therefore ONE real root
\therefore TWO real roots
\therefore ZERO real roots

Exam Review Solutions

CHAPTER 5: Trigonometry \& Acute Angles

1. Use a calculator to evaluate to four decimal places.
(a) $\cos 11^{\circ}$
(b) $\tan 83^{\circ}$
(c) $\sin 39^{\circ}$
$=0.9816$
$=8.1443$
$=0.6293$
2. Use a calculator to find θ to the nearest degree.
(a) $\cos \theta=0.3862$ $\theta=67^{\circ}$
(b) $\begin{aligned} \tan \theta & =1.2375 \\ \theta & =51^{\circ}\end{aligned}$
3. Determine all the interior angles in $\triangle P Q R$ correct to the nearest degree.

$$
\begin{aligned}
& \angle Q P R=62^{\circ}(A S T) \\
& \frac{\sin 62^{\circ}}{183}=\frac{\sin R}{100} \\
& \frac{100 \sin 62^{\circ}}{183}=\sin R \\
& 0.4825=\sin R \\
& \angle R D 29^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \angle Q & =180-29-62 \\
& =89^{\circ}
\end{aligned}
$$

4. Solve $\Delta / K L$ where $j=17.0 \mathrm{~cm}, k=18.0 \mathrm{~cm}$, and $l=21.0 \mathrm{~cm}$. Include a diagram.

Use the Cosine Law to find angle K
$k^{2}=j^{2}+l^{2}-2 j l \cos K$
$18^{2}=17^{2}+21^{2}-2(17)(21) \cos K$
$\frac{324-289-441}{-714}=\cos K$
$\frac{-406}{-714}=\cos K$
$0.5686 \cos K$
$\angle K=55.3^{\circ}$
Now, use the Sine Law to get $\angle J$.

$$
\frac{\sin J}{17}=\frac{\sin 55.3^{\circ}}{18}
$$

$\sin J=\frac{17 \sin 55.3^{\circ}}{18}$

$$
\begin{aligned}
\therefore \angle L & =180-55.3-50.9 \\
& =73.9^{\circ}(A S T)
\end{aligned}
$$

$\sin J=0.7765$
$\angle J=50.9^{\circ}$
5. A 2.7 m ladder can be used safely only at an angle of 70° with the horizontal. How high, to the nearest metre, can the ladder reach? Include a diagram.

$$
\begin{aligned}
& \sin 70^{\circ}=\frac{h}{2.7} \\
& 2.7 \sin 70^{\circ}=h \\
& 2.54=h \\
& \therefore h 3 m
\end{aligned}
$$

\therefore the ladder can reach about 2.5 mup the wall.
6. A surveyor wants to calculate the distance $B C$ across a river. He selects a position, A, so that $B A$ is 91 m , and he measures $\angle A B C$ and $\angle B A C$ as 34° and 51°, respectively. Calculate the distance $B C$ to the nearest tenth of a metre.

$$
\begin{aligned}
& \angle C=180-51-34 \\
& =95^{\circ} \\
& \therefore \frac{\sin 95^{\circ}}{91}=\frac{\sin 51^{\circ}}{a} \\
& a=\frac{91 \sin 51^{\circ}}{\sin 95^{\circ}} \\
& a \square 70.99 \mathrm{~m} \\
& a \square 71 \mathrm{~m}
\end{aligned}
$$

7. Two sides of a parallelogram measure 6.5 cm and 8.0 cm . The longer diagonal is 11.3 cm long. How long, to the nearest centimeter, is the other diagonal? (Include a diagram).

Find angle A using cosine law.

$$
\begin{aligned}
& \cos A=\frac{8^{2}+6.5^{2}-11.3^{2}}{2(8)(6.5)} \\
& \cos A=-\frac{67}{325}
\end{aligned}
$$

$$
\cos A=-0.206153846
$$

$$
A=101.897^{\circ}
$$

Use the sum of the interior angles of a quadrilateral to find angle B.

$$
A \text { and } C \text { are both } 101.897
$$

$360=A+B+C+D$
$360=101.897+B+101.897+D$
$156.206=B+D$
And since B and D are equal angles, they are 156.206/2 $=78.103^{\circ}$.

Find diagonal $A C$ using cosine law.

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& b^{2}=6.5^{2}+8^{2}-2(6.5)(8) \cos 78.103 \\
& b^{2}=106.25-21.4399 \\
& b^{2}=84.8101 \\
& b=9.209
\end{aligned}
$$

Therefore, the other diagonal is approximately 9 cm long.
8. A temporary support cable for a radio antenna is 110 m long and has an angle of elevation of 30°. Two other support cables are already attached, each at an angle of elevation of 70°. How long, to the nearest centimetre, is each of the shorter cables?

$$
\begin{aligned}
& \frac{\sin 110^{\circ}}{110}=\frac{\sin 30^{\circ}}{x} \\
& x=\frac{110 \sin 30^{\circ}}{\sin 110^{\circ}} \\
& x \square 58.5 \mathrm{~m}
\end{aligned}
$$

Each of the shorter cables is approximately 58.5 metres long.

Exam Review Solutions

CHAPTER 6: Sinusoidal Functions

1. Information about the movement of a Ferris wheel is shown below.

(a) How long does it take for the Ferris wheel to make five complete rotations?

> 1 complete turn takes 40 seconds
> 5 complete turns takes 200 seconds
(b) What is the height of the axle supporting the Ferris wheel?

$$
\text { axis }=8 \mathrm{~m}
$$

(c) Calculate the speed at which the wheel is rotating.

Circumference of the wheel $=2 \pi r$

$$
\begin{aligned}
& =2 \pi(6) \\
& =37.68 \mathrm{~m}
\end{aligned}
$$

Speed = distance/time distance travelled is circumference of the wheel

$$
=37.68 / 40
$$

$$
=0.942 \mathrm{~m} / \mathrm{s}
$$

2. Given the following graph, complete the given analysis.

Amplitude: 1
Period: 360°
Range: $\{y \in R \mid-3 \leq y \leq-1\}$
Number of cycles from -540 to 540: 3
Axis: $y=-2$
3. Describe the transformation $g(x)=-2 \sin x+1$ and then sketch it.

The sinusoidal curve $y=\sin x$ has been:

- vertically stretched by a factor of 2
- reflected in the x-axis
- vertically translated up 1 unit

4. What is the range for each of the following sinusoidal functions?
(a) $f(x)=0.5 \sin x-4$
(b) $f(x)=\sin \left(x-180^{\circ}\right)$
$\{y \in R \mid-4.5 \leq y \leq-3.5\}$
$\{y \in R \mid-1 \leq y \leq+1\}$
5. The function $f(x)=\sin x$ has been translated 60° to the right, vertically stretched by a factor of 3 and reflected in the x-axis. Write the new equation.

$$
y=-3 \sin \left(x-60^{\circ}\right)
$$

6. Write the equation for the sinusoidal function.
(a)
(b)
$y=2 \sin \left(\theta-90^{\circ}\right)-1$
$y=\sin \left(\theta+180^{\circ}\right)+3$
Other answers exist.
See the teacher
Other answers exist.
See the teacher
7. Complete the chart below.

Sinusoidal Function	Maximum	Minimum
(a) $\quad f(x)=3 \sin x$	3	-3
(b) $\quad f(x)=-\sin \left(x-45^{\circ}\right)+6$	7	5
(c) $\quad f(x)=-0.25 \sin x-1.5$	-1.25	-1.75

8. The height of a Ferris wheel is modeled by the function $h(x)=6 \sin \left(x-45^{\circ}\right)+7$, where $h(x)$ is in metres and x is the number of degrees the wheel has rotated from the boarding position of a rider.
(a) Sketch the curve.

(b) When the rider has rotated 400° from the boarding position, how high above the ground is the rider?

$$
\begin{aligned}
& \text { sub } x=400^{\circ} \\
& \begin{aligned}
y & =6 \sin \left(400^{\circ}-45^{\circ}\right)+7 \\
& =6 \sin \left(355^{\circ}\right)+7 \\
& =6(-0.0872)+7 \\
& =-0.5229+7 \\
& =6.5 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

The rider is approx. 6.5 metres above the ground
9. Sketch each sinusoidal function on the grid provided.
(a) $f(x)=2 \sin \left(x-90^{\circ}\right)$
(b) $f(x)=0.5 \sin \left(x-60^{\circ}\right)-2$

1. Write as a single power. Express answers with positive exponents. DO NOT EVALUATE.

$$
\frac{(-4)^{6}(-4)^{3}}{\left((-4)^{9}\right)^{2}}
$$

(a) $\begin{aligned} & 4^{3} \times 4 \times 4^{2} \\ & =4^{6}\end{aligned}$
(b) $\begin{aligned} & 5\left(5^{3}\right) \\ & =5^{4}\end{aligned}$
(c) $=\frac{(-4)^{9}}{(-4)^{18}}$
$=(-4)^{-9}$
$=\frac{1}{(-4)^{9}}$
$\frac{3^{4}}{\left(3^{2}\right)^{3}}$
$\frac{\left(20^{-1}\right)^{8}}{20^{2} 20^{6}}$
$\left(\frac{1}{9}\right)^{5}\left(\frac{1}{9}\right)^{-3}$
(d) $\begin{aligned} & =\frac{3^{4}}{3^{6}} \\ & =\frac{1}{3^{2}}\end{aligned}$
(e) $\begin{aligned} & =\frac{20^{-8}}{20^{8}} \\ & =20^{-16} \\ & =\frac{1}{20^{16}}\end{aligned}$
(f) $=\left(\frac{1}{9}\right)^{2}$
$=\frac{1}{9^{2}}$
2. Evaluate WITHOUT using a calculator.
$256^{\frac{-5}{4}}$
$=(\sqrt[4]{256})^{-5}$
$\left(-\frac{1}{2}\right)^{3}+2^{-3}$
$4^{-1}+4^{0}+4^{2}$
(a) $=4^{-5}$
(b) $=-\frac{1}{8}+\frac{1}{8}$
(c) $=\frac{1}{4}+1+16$
$=\frac{1}{4^{5}}$

$$
=0
$$

$$
=17.25
$$

$=17.25$
$=\frac{1}{1024}$

$$
\left(\frac{27}{64}\right)^{\frac{-1}{3}}
$$

$16^{\frac{3}{2}}$
$\begin{array}{lr}=\left(\frac{64}{27}\right)^{\frac{1}{3}} & \text { (f) } \begin{array}{lr}\sqrt[5]{-32} \\ =\sqrt[3]{64} & =-2\end{array}\end{array}$
$=4^{3}$
$=64$
$=\frac{\sqrt[3]{64}}{\sqrt[3]{27}}$
$=\frac{4}{3}$
3. Complete the table.

Exponential Form	Radical Form	Evaluation of Expression
$81^{\frac{1}{4}}$	$\sqrt{81}^{\frac{4}{3}}$	$\sqrt[3]{27}^{4}$
$27^{\frac{1}{3}}$	$\sqrt[5]{7776}^{3}$	81
7776^{375}	$\sqrt[5]{4096}^{3}$	6
4096^{075}	512	

4. Use your calculator to evaluate each expression. Express answers to two decimals.
(a) $256^{066}=38.85$
(b) $15^{\frac{-3}{2}}=0.02$
(c) $\sqrt[1]{3.7}=1.13$
(d) $\sqrt[4]{-99}$ not possible
5. Complete the table.

Function	Exponential Growth or Decay?	Initial Value $(y$-intercept $)$	Growth/Decay rate
$P(n)=200(1-0.032)^{n}$	decay	200	3.2%
$A(x)=(2)^{x}$	growth	1	100%
$Q(x)=0.85(0.77)^{x}$	decay	0.85	23%

6. Calculate finite differences to classify each function as linear, quadratic, exponential or none of those.
(a)
(b)

x	y	Δy	$\Delta(\Delta y)$
-4	47		
		-21	
-3	26		6
		-15	
-2	11		6
		-9	
-1	2		6
		-3	
0	-1		

Conclusion quadratic

x	y	Δy	$\Delta(\Delta y)$
-1	0.125		
		0.125	
0	0.25		1.625
		1.75	
1	2		4.25
		6	
2	8		18
		24	
3	32		

Conclusion \qquad none \qquad

Formulas:

$$
P=P_{0}(1+r)^{n} \quad P=P_{0}(1-r)^{n} \quad I(d)=I_{0}(1+r)^{d} \quad N(d)=N_{0}(1+r)^{d}
$$

7. Greg invests $\$ 750$ in a bond that pays 4.3% per year.
(a) Calculate, to the nearest penny, what Greg's total amount will be after 4 years.

$$
A=750(1.043)^{4}
$$

$$
A=887.56 \quad \therefore \text { the amount will be } \$ 887.56
$$

(b) How much money did $\$ 750$ earn in four years?

$$
887.56-750=137.56 \quad \therefore \text { il earned } \$ 137.56
$$

(c) If Greg is planning to enter University in 2018 , would his money have doubled by then? 2018 is 8 years from now

$$
\begin{aligned}
& A=750(1.043)^{8} \\
& A=1050.35 \quad \therefore \text { he did not get } \$ 1500 \text {, so his money did not double }
\end{aligned}
$$

8. A police diver is searching a harbour for stolen goods. The equation that models the intensity of light per metre of depth is $I(n)=100(0.92)^{n}$.
(a) At what rate does the light diminish per metre?
$1-r=0.92$
$r=0.08 \quad \therefore$ the light diminishes by 8% per metre
(b) Determine the amount of sunlight the diver will have at a depth of 18 m , relative to the intensity at the surface.

$$
I(18)=100(0.92)^{18}
$$

$$
I(18)=22.29 \quad \therefore \text { the light is } 22.29 \% \text { as intense as it was at the surface }
$$

9. Ryan purchases a used vehicle for $\$ 11,899$. If the vehicle depreciates at a rate of 13% yearly, what will the car be worth, to the nearest dollar, in ten years? Show your work.

$$
\begin{aligned}
& P(10)=11899(1-0.13)^{10} \\
& P(10)=2955.99 \quad \therefore \text { it will be worth } \$ 2955.99 \text { in } 10 \text { years }
\end{aligned}
$$

10. After being filled, a basketball loses 3.2% of its air every day. The initial amount of air in the ball was $840 \mathrm{~cm}^{3}$
(a) Write an equation to model this situation.

Let $P(t)$ represent the final amount of air left in the ball after t days

$$
P(t)=840(1-0.032)^{t}
$$

(b) Determine the volume after 4 days.

$$
P(4)=840(0.968)^{4}
$$

$$
P(4)=737.53 \quad \therefore \text { there is } 737.53 \mathrm{~cm}^{3} \text { of air left in the ball }
$$

(c) Will this model be valid after 6 weeks? Explain.

We can still use the equation for $t=42$ (6 weeks $=42$ days). However, the ball probably won't be losing air at the same rate (it will be losing it at a much slower rate that it was when it was first pumped up) so the equation will not model the situation accurately after so long.
11. List 4 characteristics of an exponential function.

Consider the function $f(x)=b^{x}, b$ is positive and not equal to 1

- domain is $\{x \in R\}$, range is $\{y \in R \mid y>0\}$
- if $b>1$, the greater the value, the faster the growth
- if $0<b<1$, the lesser the value, the faster the decay
- horizontal asymptote is $y=0$ (the x-axis)
- y-intercept is 1

First and second differences are related by a multiplication pattern.

EXTRA QUESTIONS: Chapter 7
 p. 526 \# 1 - 8

1. Complete the table (to the nearest penny).

Prinicpal (\$)	Annual Interest Rate (\%)	Time	Simple Interest Paid (\$)	Amount
400	7.25	5 years	145	545
8098.22	$3 \frac{3}{4} \%$	13 months	328.99	8427.21
760.60	5.5	4.3 years	180.00	940.60

12. Kurtis earned $\$ 279.40$ in simple interest by investing a principal of $\$ 400$ in a Treasury bill. If the interest rate was $3.35 \% / a$, for how many years did he have his investment?

$$
\begin{aligned}
I & =\operatorname{Pr} t \\
279.40 & =(400)(0.0335) t \\
\frac{279.40}{(400)(0.0335)} & =t
\end{aligned}
$$

$$
20.85=t
$$

Therefore, he had his investment for almost 21 years.
13. Complete the table (correct to 2 decimal places).

Principal (\$)	Annual Interest Rate (\%)	Years Invested	Compounding Period	Amount (\$)	Interest Earned (\$)
350	2.75	10	monthly	460.64	110.64
2500	8.5	2	semi-annually	2952.87	452.87
267.00	$2 \frac{1}{4} \%$	7	annually	315.50	48.50
12000	3.24%	7	weekly	15053.88	3053.88

14. Calculate the amount you would end up with if you invested $\$ 2500$ at $4 \frac{1}{2} \% /$ a compounded semi-annually for 8 years?

$$
\begin{aligned}
& P=2500 \\
& i=\frac{0.045}{2}=0.0225 \\
& n=2 \times 8=16 \\
& A=P(1+i)^{n} \\
& A=2500(1.0225)^{16} \\
& A=3569.05 \\
& \text { Therefore, you would end up with } \$ 3569.05
\end{aligned}
$$

15. Johnny borrowed money from a friend. The interest rate was $5.75 \% / a \operatorname{compounded}$ monthly. If Johnny will repay $\$ 5667$ over the next 6 years. How much money did Johnny borrow?

$$
A=5667
$$

$$
i=\frac{0.0575}{12}=0.004791666
$$

$$
n=6 \times 12=72
$$

$$
P=A(1+i)^{-n}
$$

$$
P=5667(1.004791666)^{-72}
$$

$$
P=4016.79
$$

Therefore, Johnny borrowed $\$ 4016.79$

EXTRA QUESTIONS - Chapter 8
 p. 526 \#9,10

