Unit 7: Exponential Functions Lesson 6: Review

RECALL: Exponents Rules

1. Multiplying powers $\left(x^{a}\right)\left(x^{b}\right)=x^{a+b}$
2. Dividing powers $\frac{x^{a}}{x^{b}}=x^{a-b}$
3. Power of a power $\left(x^{a}\right)^{b}=x^{a \cdot b}$
4. Power of a product $(x y)^{a}=x^{a} y^{a}$
5. Power of a quotient $\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}}$
6. Zero exponents $x^{0}=1$
7. Negative exponent $x^{-a}=\frac{1}{x^{a}}\left(\frac{x}{y}\right)^{-a}=\left(\frac{y}{x}\right)^{a}$
8. Relational exponents $\begin{aligned} x^{\frac{1}{n}} & =\sqrt[n]{x} x^{\frac{m}{n}}\end{aligned} \begin{aligned} x^{a} & (\sqrt[n]{x})^{m} \\ U R & =\sqrt[n]{x^{m}}\end{aligned}$

EX. 1. amplify each expression to a single power Express answers with positive exponents.

$$
\begin{aligned}
\text { a) } \begin{aligned}
& x^{2} \times x^{4} \times x^{\frac{1}{2}} \div x^{-3} \text { b) } \\
&\left.=a^{2} \div a^{4}\right)^{-3} \\
&==\left(a^{2-4}\right)^{-3} \\
&= x^{\frac{1}{2}-(-3)} \leftarrow 9^{\frac{1}{2}}
\end{aligned} & =\left(0^{-2}\right)^{-3} \\
& =a^{6}
\end{aligned}
$$

c) $\left(5 x^{4} y^{3} z^{2}\right)^{2}$
e) $\frac{\left(2 m^{3} n^{4}\right)\left(9 m^{2} n t\right.}{3 m n^{5}}$
c) (x, y)

$$
=x
$$

$$
\begin{aligned}
& =\frac{x^{4}}{3^{4}} \\
& =\frac{x^{4}}{81}
\end{aligned}
$$

$=\frac{18 m^{5} n^{5}}{3 m^{1} n^{5}}$
$=6 m^{4}$

$$
\begin{aligned}
& =5^{2} x^{8} y^{6} z^{4} \\
& =25 x^{8} y^{6} z^{4}
\end{aligned}
$$

f) $2^{4} \times 2^{\frac{3}{4}} \times \sqrt{8} \times \frac{3}{1} \times \frac{1}{2}$

EX. 2. Write in exponential form.

$$
\left(3 x^{4}=x^{\frac{1}{3}}\right.
$$

EX. 3. Write in radical form.

$$
\begin{aligned}
& \text { Write in radical form. } \\
& x^{\frac{3}{5}}=\sqrt[5]{x^{3}} \text { oR }=(\sqrt[5]{x})^{3}=2^{\frac{25}{4}}
\end{aligned}
$$

EX. 4. Evaluate
a) $(\sqrt[4]{81})^{2}$
b) $\left(2^{4}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
=(3)^{2} & =(16)^{1 / 2} \\
=9 & =(-2) \\
& =\sqrt{16} \quad=r 1
\end{aligned}
$$

c) $(\sqrt[5]{-32})^{2}$

Difference Tables
Explain how to show that a table of values represents each type of function.

- Linear

First diff. are the same.

- Quadratic Second
- Exponential Fist Ratios are tho same.

EX. 1. Is this linear, quadratic or exponential? If it is exponential, is it an example of exponential growth or decay? What is the constant ratio?

$$
\begin{aligned}
& y=\left(u^{4}\right)^{2} \\
& \begin{array}{l}
>\frac{4}{1}=4 \\
>\frac{16}{4}=4
\end{array} \\
& \frac{64}{16}=4
\end{aligned}
$$

2

3

4

Exponential Functions: $\quad y=a(b)^{n}$

Without graphing, complete the following table.

How would adding a ' k ' value to the end of the equation affect things?

$$
y=a(b) n+k \text { moves p or down. }
$$

Complete the table of

x	y
-2	$4^{-2}=\frac{1}{4^{2}}=\frac{1}{16}$
-1	$4^{-1}=\frac{1}{4}$
0	1
1	4
2	16
3	64

Exponential Growth \& Decay
EX. 1. In 1985, there were 285 cell phone subscribers in the small town of Centerville. The number of subscribers has increased by 75%. per year since 1985.

$$
N(t)=a(b)^{t}
$$

a) Write an equation to model this growth where $N(t)$ is the number of subscribers after t years.

$$
\begin{aligned}
N(t) & =285(1+0.75)^{t} \\
& =285(1.75)^{t}
\end{aligned}
$$

b) Determine the number of subscribers in 1998.
owned cell phons

$$
\begin{aligned}
& 1 \text { people phon }=285(1443.758) \\
& \text { ned clip } \\
& \text { in } 1998 .=411471.247
\end{aligned}
$$

c) How many subscribers were there in 1980 (ie. 5 years ago)? 5

$$
\begin{aligned}
& \therefore \text { therefore only } N=285(1.75)^{-5} \\
& 17 \text { well photos }=285(0.0609) \\
& 5 \text { years earlier. }=17.364
\end{aligned}
$$

d) After how many years will there be $1,000,000,000$ subscribers?

$$
\begin{aligned}
& \frac{1000000000}{285}=\frac{285(1.75)^{t}}{285} t
\end{aligned}
$$

$$
\begin{aligned}
& 3508771.93=1.75^{t} \\
& 1.75^{20}=72570 \\
& \therefore \text { after } 27 \text { years } 1.75^{30}=19549761 \\
& \text { th } 1000000000 \\
& \text { mark is passed. } 1.75^{24}=6383595 \\
& 1.75^{27}=3647 \quad 768
\end{aligned}
$$

EX. 2. The number of participants in a local tennis tournament can be modeled by the function $P(t)=128(0.5)^{t}$ where $P(t)$ is the number of participants after t rounds of play.
a) How many participants entered in the tournament?
b) At what rate are participants eliminated after each round?
c) After how many rounds of play will the number of participants be half the original amount?

