## Solving Problems by Using Acute-Triangle Models

## GOAL

Solve problems involving the primary trigonometric ratios and the sine and cosine laws.


## bearing

the direction in which you have to move in order to reach an object. A bearing is a clockwise angle from magnetic north. For example, the bearing of the lighthouse shown is $335^{\circ}$.


## LEARN ABOUT the Math

Steve leaves the marina at Jordan on a 40 km sailboat race across Lake Ontario intending to travel on a bearing of $355^{\circ}$, but an early morning fog settles. By the time it clears, Steve has travelled 32 km on a bearing of $22^{\circ}$.
? In which direction must Steve head to reach the finish line?

## EXAMPLE 1 Solving a problem by using the sine and cosine laws

Determine the direction in which Steve should head to reach the finish line.
Liz's Solution

$j=\sqrt{40^{2}+32^{2}-2(40)(32) \cos 27^{\circ}} \longleftarrow\left[\begin{array}{l}\text { To solve for } j, \text { I took the square } \\ \text { root of both sides of the } \\ \text { equation. }\end{array}\right.$
$j \doteq 18.521 \mathrm{~km} \longleftarrow[$ used a calculator to evaluate. $\frac{\sin \theta}{40}=\frac{\sin 27^{\circ}}{18.521} \longleftrightarrow\left[\begin{array}{l}\text { I now had information to be } \\ \text { able to use the sine law. }\end{array}\right.$ $\frac{1}{40} \times \frac{\sin \theta}{40}=40 \times \frac{\sin 27^{\circ}}{18.521}$
$\sin 27^{\circ}$$\longleftarrow\left[\begin{array}{l}\text { To solve for angle } \theta, \text { I multiplied } \\ \text { both sides of the equation } \\ \text { by } 40 .\end{array}\right.$

$$
\begin{aligned}
\sin \theta & =40 \times \frac{\sin 27^{\circ}}{18.521} \\
\theta & =\sin ^{-1}\left(40 \times \frac{\sin 27^{\circ}}{18.521}\right) \longleftarrow \\
\theta & \doteq 79^{\circ}
\end{aligned}
$$


bearing $=22^{\circ}+180^{\circ}+79^{\circ}$

$$
=281^{\circ}
$$

The bearing is measured from due north. So I added all the angles from due north to side $j$. I knew that the angle along the extended side $t$ is $180^{\circ}$.
Steve must head at a bearing of about $281^{\circ}$ to reach the finish line.

## Reflecting

A. Why didn't Liz first use the sine law in her solution?
B. How is a diagram of the situation helpful? Explain.
C. Is it possible to solve this problem without using the sine law or the cosine law? Justify your answer.

## APPLY the Math

## EXAMPLE 2 Solving a problem by using primary trigonometric ratios

A ladder leaning against a wall makes an angle of $31^{\circ}$ with the wall. The ladder just touches a box that is flush against the wall and the ground. The box has a height of 64 cm and a width of 27 cm . How long, to the nearest centimetre, is the ladder?

Denis's Solution


The box and ladder form two right triangles. I labelled the two parts of the ladder as $x_{1}$ and $x_{2}$. The total length of the ladder is the sum of $x_{1}$ and $x_{2}$.

Since $C E$ is parallel to $A D, \angle E C F$ is equal to $\angle B A C$, which is $31^{\circ}$.

In $\triangle A B C$ :

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}
$$

In $\triangle C E F$ :

$$
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \longleftarrow
$$

$$
\sin 31^{\circ}=\frac{B C}{x_{1}}
$$

$\cos 31^{\circ}=\frac{C E}{x_{2}}$

$$
\sin 31^{\circ}=\frac{27}{x_{1}}
$$

$\cos 31^{\circ}=\frac{64}{x_{2}}$

$x_{2} \times \cos 31^{\circ}=\frac{1}{x_{2}} \times \frac{64}{x_{2}^{\prime}} \longleftarrow<$
$x_{1} \times \sin 31^{\circ}=27$

In $\triangle A B C, B C=27 \mathrm{~cm}$; in $\triangle C E F, C E=64 \mathrm{~cm}$.
In each triangle, I knew a side and an angle and I needed to calculate the hypotenuse. So I used primary trigonometric ratios:

- sine, since $B C$ is opposite the $31^{\circ}$ angle
- cosine, since $C E$ is adjacent to the $31^{\circ}$ angle

To solve for $x_{1}$, I multiplied both sides of the equation by $x_{1}$ and divided both sides by $\sin 31^{\circ}$. To solve for $x_{2}$, I multiplied both sides of the equation by $x_{2}$ and divided both sides by $\cos 31^{\circ}$.

$$
\doteq 127 \mathrm{~cm}
$$

adder is about 127 cm long.

## EXAMPLE 3 Selecting a strategy to calculate the area of a triangle

Jim has a triangular backyard with side lengths of $27 \mathrm{~m}, 21 \mathrm{~m}$, and 18 m . His bag of fertilizer covers $400 \mathrm{~m}^{2}$. Does he have enough fertilizer?

## Barbara's Solution



$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \longleftarrow \\
18^{2} & =27^{2}+21^{2}-2(27)(21) \cos A \\
18^{2}-27^{2}-21^{2} & =-2(27)(21) \cos A
\end{aligned}\left\{\begin{array}{l}
\text { To determine the area, } \\
\text { I needed the height, } h, \\
\text { of the triangle. To } \\
\text { determine } h, \text { I had to }
\end{array}\right.
$$ I needed the height, $h$, of the triangle. To determine $h$, I had to calculate an angle first, so I chose $\angle A$. I used the cosine law to

$$
\begin{aligned}
\frac{18^{2}-27^{2}-21^{2}}{-2(27)(21)} & =\left(\begin{array} { l } 
{ \frac { - 2 ( 2 7 ) ( 2 1 ) } { - 2 ( 2 7 ) ( 2 1 ) } ) \operatorname { c o s } A } \\
{ 1 }
\end{array} \longleftarrow \left[\begin{array}{l}
\text { determine } \angle A . \\
\text { To solve for } \angle A, ~ \text { I } \\
\text { divided both sides of } \\
\text { the equation by } \\
-2(27)(21) .
\end{array}\right.\right. \\
\cos A & =\frac{18^{2}-27^{2}-21^{2}}{-2(27)(21)} \\
\angle A & =\cos ^{-1}\left(\frac{18^{2}-27^{2}-21^{2}}{-2(27)(21)}\right) \longleftarrow\left[\begin{array}{l}
\text { I used the inverse cosine } \\
\text { function on a calculator } \\
\text { to evaluate. }
\end{array}\right.
\end{aligned}
$$

$$
\angle A \doteq 41.75^{\circ}
$$

$$
\begin{aligned}
& \frac{x_{1} \times \sin \frac{1}{31} 1^{\circ}}{\sin 31^{\circ}}=\frac{27}{\sin 31^{\circ}} \quad \frac{x_{2} \times \cos 31^{\circ}}{\cos 31^{\circ}}=\frac{64}{\cos 31^{\circ}} \\
& x_{1}=\frac{27}{\sin 31^{\circ}} \quad x_{2}=\frac{64}{\cos 31^{\circ}} \\
& x_{1} \doteq 52.42330871 \quad x_{2} \doteq 74.66453742 \longleftarrow \quad[\text { I used a calculator to evaluate. } \\
& \begin{aligned}
\text { length } & =x_{1}+x_{2} \longleftarrow \longleftarrow \\
& =52.42330871+74.66453742
\end{aligned} \quad\left[\begin{array}{l}
\text { I added } x_{1} \text { and } x_{2} \text { to determine the length } \\
\text { of the ladder. }
\end{array}\right. \\
& I \text { added } x_{1} \text { and } x_{2} \text { to determine the length }
\end{aligned}
$$

$$
\begin{aligned}
& \sin A=\frac{\text { opposite }}{\text { hypotenuse }} \longleftarrow<\left\{\begin{array}{l}
\text { Since I knew } \angle \mathrm{A}, \\
\text { I used a primary }
\end{array}\right. \\
& \sin A=\frac{h}{21} \\
& \sin 41.75^{\circ}=\frac{b}{21} \\
& 21 \times \sin 41.75^{\circ}=2^{1} 2 \times \frac{h}{21} \longleftarrow \\
& \begin{aligned}
21 \times \sin 41.75^{\circ} & =h \\
13.98 \mathrm{~m} & \doteq h
\end{aligned} \quad\left[\begin{array}{l}
\text { I used a calculator to } \\
\text { evaluate. }
\end{array}\right. \\
& A=\frac{1}{2} b \times h \quad \longleftarrow \quad \text { I substituted the values } \\
& =\left(\frac{1}{2}\right) 27 \times 13.98 \\
& \doteq 189 \mathrm{~m}^{2}
\end{aligned}
$$

Since 189 is less than half of 400 , Jim has enough fertilizer to cover his lawn twice and still have some fertilizer left over.

## EXAMPLE $4 \quad$ Solving a problem to determine a perimeter

A regular octagon is inscribed in a circle of radius 15.8 cm . What is the perimeter, to the nearest tenth of a centimetre, of the octagon?


## Shelley's Solution



An octagon is made up of eight identical triangles, each of which is isosceles because two sides are the same length (radii of the circle).


$$
=45^{\circ}
$$ get $\angle A$.



$$
\begin{gathered}
\angle A+\angle B+\angle C=180^{\circ} \\
45^{\circ}+2 \angle B=180^{\circ}
\end{gathered}\left\{\begin{array}{l}
\text { Since } \triangle B A C \text { is isosceles, } \\
\angle B=\angle C . \text { The sum of th }
\end{array}\right.
$$

$$
2 \angle B=180^{\circ}-45^{\circ}
$$

$$
2 \angle B=135^{\circ}
$$

$$
\angle B=67.5^{\circ}
$$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B} \\
a \\
15.8
\end{gathered} \longleftrightarrow\left\{\begin{array}{l}
\text { I knew an angle and the side } \\
\text { opposite that angle. So I used the } \\
\text { sine law to calculate } a .
\end{array}\right.
$$

$$
\frac{a}{\sin 45^{\circ}}=\frac{15.8}{\sin 67.5^{\circ}}
$$

$$
\sin 45^{\circ} \times \frac{a}{\sin -45^{\circ}}=\sin 45^{\circ} \times \frac{15.8}{\sin 67.5^{\circ}} \leftarrow\left[\begin{array}{l}
\text { To solve for a, I multiplied both } \\
\text { sides of the equation by } \sin 45^{\circ} .
\end{array}\right.
$$

$$
a=\sin 45^{\circ} \times \frac{15.8}{\sin 67.5^{\circ}}
$$

$$
a \doteq 12.09 \mathrm{~cm} \longleftarrow[\text { I used a calculator to evaluate. }
$$

$$
\text { perimeter }=12.09 \times 8 \longleftarrow \text { The octagon is made up of eight }
$$

$$
\doteq 96.7 \mathrm{~cm}
$$

The perimeter of the octagon is about sides of length equal to $a$. So I multiplied $a$ by 8 to get the perimeter. 96.7 cm .

## In Summary

## Key Idea

- The primary trigonometric ratios, the sine law, and the cosine law can be used to solve problems involving triangles. The method you use depends on the information you know about the triangle and what you want to determine.


## Need to Know

- If the triangle in the problem is a right triangle, use the primary trigonometric ratios.
- If the triangle is oblique, use the sine law and/or the cosine law.

| Given | Required to Find | Use |
| :---: | :---: | :---: | :---: |
|  | angle | sine law |

## CHECK Your Understanding

1. For each triangle, describe how you would solve for the unknown side or angle.
a)

b)

c)

2. Complete a solution for each part of question 1 . Round $x$ to the nearest tenth of a unit and $\theta$ to the nearest degree.

## PRACTISING

3. Determine the area of $\triangle A B C$, shown at the right, to the nearest
${ }^{\mathbf{K}}$ square centimetre.
4. The legs of a collapsible stepladder are each 2.0 m long. What is the maximum distance between the front and rear legs if the maximum angle at the top is $40^{\circ}$ ? Round your answer to the nearest tenth of a metre.
5. To get around an obstacle, a local electrical utility must lay two

A sections of underground cable that are 371.0 m and 440.0 m long. The two sections meet at an angle of $85^{\circ}$. How much extra cable is necessary due to the obstacle? Round your answer to the nearest tenth of a metre.
6. A surveyor is surveying three locations $(M, N$, and $P)$ for new rides in an amusement park around an artificial lake. $\angle M N P$ is measured as $57^{\circ} . M N$ is 728.0 m and $M P$ is 638.0 m . What is the angle at $M$ to the nearest degree?
7. Mike's hot-air balloon is 875.0 m directly above a highway. When he is looking west, the angle of depression to Exit 81 is $11^{\circ}$. The exit numbers on this highway represent the number of kilometres left before the highway ends. What is the angle of depression, to the nearest degree, to Exit 74 in the east?


8. A satellite is orbiting Earth 980 km above Earth's surface. A receiving dish is located on Earth such that the line from the satellite to the dish and the line from the satellite to Earth's centre form an angle of $24^{\circ}$ as shown at the left. If a signal from the satellite travels at $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, how long does it take to reach the dish? Round your answer to the nearest thousandth of a second.
9. Three circles with radii of $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm are touching each other as shown. A triangle is drawn connecting the three centres. Calculate all the interior angles of the triangle. Round your answers to the nearest degree.

10. Given the regular pentagon shown at the left, determine its perimeter

I to the nearest tenth of a centimetre and its area to the nearest tenth of a square centimetre.
11. A 3 m high fence is on the side of a hill and tends to lean over. The hill is inclined at an angle of $20^{\circ}$ to the horizontal. A 6.3 m brace is to be installed to prop up the fence. It will be attached to the fence at a height of 2.5 m and will be staked downhill from the base of the fence. What angle, to the nearest degree, does the brace make with the hill?

12. A surveyor wants to calculate the distance $B C$ across a river. He selects a position, $A$, so that $C A$ is 86.0 m . He measures $\angle A B C$ and $\angle B A C$ as $39^{\circ}$ and $52^{\circ}$, respectively, as shown at the left. Calculate the distance $B C$ to the nearest tenth of a metre.
13. For best viewing, a document holder for people who work at computers should be inclined between $61^{\circ}$ and $65^{\circ}(\angle A B C)$. A 12 cm support leg is attached to the holder 9 cm from the bottom. Calculate the minimum and maximum angle $\theta$ that the leg must make with the holder. Round your answers to the nearest degree.
14. Match each method with a problem that can be solved by that

C method. Describe how each method could be used to complete a solution.


| Method | Problems |
| :--- | :--- |
| Cosine law | Chris lives in a U-shaped building. From his window, <br> he sights Bethany's window at a bearing of $328^{\circ}$ and <br> Josef's window at a bearing of $19^{\circ}$. Josef's window is <br> 54 m from Bethany's and both windows are directly <br> opposite each other. How far is each window from <br> Chris's window? |
| Sine law | When the Sun is at an angle of elevation of $41^{\circ}$, <br> Martina's treehouse casts a shadow that is 11.4 m long. <br> Assuming that the ground is level, how tall is Martina's <br> treehouse? |
| Primary <br> trigonometric <br> ratios | Ken walks 3.8 km west and then turns clockwise <br> $65^{\circ}$ before walking another 1.7 km. How far <br> does Ken have to walk to get back to where he started? |

## Extending

15. Two paper strips, each 2.5 cm wide, are laying across each other at an angle of $27^{\circ}$, as shown at the right. What is the area of the overlapping paper? Round your answer to the nearest tenth of a square centimetre.
16. The diagram shows a roofing truss with $A B$ parallel to $C D$. Calculate the total length of wood needed to construct the truss. Round your
 answer to the nearest metre.

17. Lucas takes a 10.0 m rope and creates a triangle with interior angles of $30^{\circ}, 70^{\circ}$, and $80^{\circ}$. How long, to the nearest tenth of a metre, is each side?
