MHF 4UI Trigonometric Functions

Day 2 - Radian Measure

A brief introduction of radians from Khan Academy:

Background

Arc length: Length of an arc on a circle

(i.e. s in the diagram below)

The ratio of any arc length to the radius, $\frac{s}{r}$, will be the radian measure of the central angle which that arc subtends

Circumference of a circle:
$$C = 2\pi r$$
 $\Rightarrow 2\pi = \frac{C}{r}$

so, since C is an arc length (the entire circle), the radian measure of $360^{\rm o}=2\pi$

Other notable angles (in radians):

$$180^{\circ} = \pi$$
 $90^{\circ} = \frac{\pi}{2}$ $60^{\circ} = \frac{\pi}{3}$ $45^{\circ} = \frac{\pi}{4}$ $30^{\circ} = \frac{\pi}{6}$

$$\frac{180}{\pi} = 1 \ rad$$
 $\frac{\pi}{180} = 1^{\circ}$

Conversion

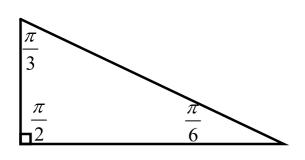
- 1. Convert the following angle measures from radians to degrees:
 - a. $\frac{3\pi}{4}$

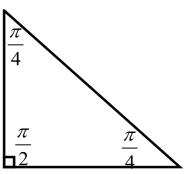
b. $\frac{11\pi}{8}$

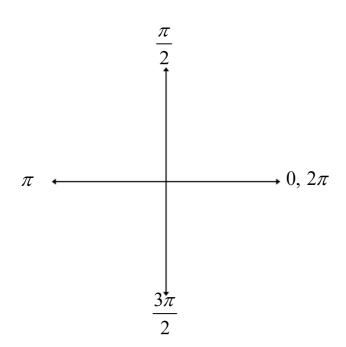
c. 4.7 radians

- 2. Convert the following angle measures from degrees to radians:
 - a. 120°
- b. 225°
- c. 75°

Day 2 -	Radians.	.notebook
Duy L	itaalalis	.110t6b00K


Evaluate each of the following to 3 decimal places:


a. sin(5.3)


b. tan(0.4)

c. sec(-2.4)

Special Triangles... with radians

Day 2 - Radians.notebook

Evaluate each of the following (give an exact answer):

a.
$$\sin\left(\frac{2\pi}{3}\right)$$

b.
$$\csc\left(\frac{3\pi}{4}\right)$$
 c. $\tan\left(\frac{7\pi}{6}\right)$

c.
$$\tan\left(\frac{7\pi}{6}\right)$$