Unit 3: Polynomials

Day 3: Common Factoring

Today we will...

- 1. Learn how to recognize common factors in polynomials.
- 2. Learn how to write a polynomials as a product of a common factor and a polynomial.

What do you call a number that doesn't stay in one place?

What is Factoring?

How can we write 18 as the product of smaller numbers?

18
Called prime

Therefore 18 =

Factor: Write a polynomial as the product of 2 or more "smaller" polynomials

i.e. "Break it down into smaller pieces"

The greatest common factor (GCF) of a set of terms is:

the largest number and/or variable that divides evenly into all terms.

Example 1: Identify the GCF of the following terms.

c)
$$p^7q^8$$
, p^3q^6 , p^5q^2

d)
$$9x^3y^4$$
, $18x^6y^7$, $6x^7y^2$

2DI_U3_Polynomials L3_Common Factoring.notebook

To common factor ...

Look for the GCF of all the terms in the polynomial

"Remove" the common factor by dividing all terms by it

Place common factor outside a set of brackets with divided polynomial inside

Example 2: Common factor each polynomial.

a)
$$6x + 30$$

b)
$$x^2 - x$$

d)
$$10p^4 - 15p^3 - 5p^2$$

e)
$$m^3n^2 - mn^4 - m^5n$$

f)
$$49xy^2z + 14x^2yz^2 - 35xyz$$

2DI_U3_Polynomials L3_Common Factoring.notebook

Sometimes the common factor isn't a monomial. We can factor out other polynomials as well as common factor portions of the polynomial!

Example 3: Common factor each polynomial.

a)
$$5x(x-2)-3(x-2)$$

c)
$$3a(4a + 5b) - 2b(4a + 5b)$$

d)
$$x(2 - 3x - x^2) + 5(x^2 + 3x - 2)$$

b)
$$10x^2 + 5x - 6xy - 3y$$

Homework: Common Factoring Handout

Quiz next class:

Expanding and Simplifying