MCF3MI

Unit 3 Day 4

Solving a Quadratic Equation by Graphing

Quadratic Function

Quadratic Equation

A quadratic function:

- Is a function with a squared variable
- There are two variables or function notation
- To solve it, write the corresponding equation and solve it.
- On a graph, the solution are the zeros

A quadratic equation:

- Is an equation with a squared variable.
- There is only one variable in the equation.
- To SOLVE it, you need to find the VALUE for the VARIABLE that makes the equation true.
- In an equation the solution is the *roots*.

Investigate the Math:

A model rocket is launched from the roof of a building. The height, h(t), in metres, at any time, t, in seconds, is modelled by the function $h(t) = -5t^2 + 15t + 20$

1. Use Desmos to graph the height of the function. Determine the following properties of the function:

a. Zeros: X (-) 4
b. Axis of Symmetry: X = 1.5
c. Vertex: (1.5.31.25)

2. What is the rocket's height when it hits the ground? Use this value to write a quadratic equation you could use to determine when the rocket hits the ground.

3. Substitute one of the zeros you determined in #1 into the quadratic equation you wrote in #2. Repeat this for the other zero. What do you notice?

h(-1)= -5(1) + 15(-1) +20 -0

- 4. What are the <u>roots</u> of the equation you wrote in #2 $\frac{1}{1} = \frac{1}{1}$

5. State the domain and range of the function in the context of the question.
1. Lek, 0 < t < 4
2. Lek, 0 < t < 4
31.25
6. What is the starting height of the rocket? Where is it on the graph? Where is it in the

- by intercept
- 7. When will the rocket hit the ground?

t = 4 seconds.

To SOLVE a quadratic equation by graphing...

- 1. Rewrite the equation as a function in standard form $(ax^2 + bx + c = 0)$.
- Graph the function using technology.
- 3. Determine the zeros of the function. These are the mathematical solutions that solve the equation (the roots of the equation).
- 4. If a word problem, interpret the solutions in the context of the question. It may be that both zeros don't make sense - only one does!

Example 1: Solve each of the following by graphing using Desmos.

Example 2:

The population of an Ontario city is modelled by the function $P(t) = 0.5t^2 + 10t + 300$, where P(t) is the population in thousands and t is the time in years. Note: t = 0 corresponds to the year 2010.

a) What was the population in 2010?

$$P(O) = 0.5(0)^{2} + 10(0) + 300$$

.: the population is 300 000

b) What will the population be in 2020?

What will the population be in 2020?
$$P(10) = 0.5(10)^{2} + 10(10) + 300$$

$$= 0.5(100) + 100 + 300$$

$$= 450$$

$$= 450$$

$$= 450$$
When is the population expected to be 1.050,000?

c) When is the population expected to be 1 050

e population expected to be 1 050 0002

$$0.5t^{2} + 10t + 300$$
 $0.5t^{2} + 10t + 300 - 1050$
 $0.5t^{2} + 10t - 750$
 $0.5t^{2} + 10t - 750$

*Use DESMOS for all graphing! Pg. 149 #2, 3, 4, 5 . Pg. 150 #6, 7 | 0 50 000 . Prepare for Quiz next class: p. 155#1, 2, 3