Unit 1:	Systems	of Linear	Equations
---------	---------	-----------	------------------

Day 5: Solving Systems using Substitution

Today we will...

1.	Learn how	to solve a	a systems	algebraically	by by	using
	the method	of substit	ution			

Consider	the	follow	/ina	linear	system.
COLISIACI	$\mathbf{u} \cdot \mathbf{v}$	IOIIOV	11119	micai	JyJtCiii.

$$x + y = 5$$

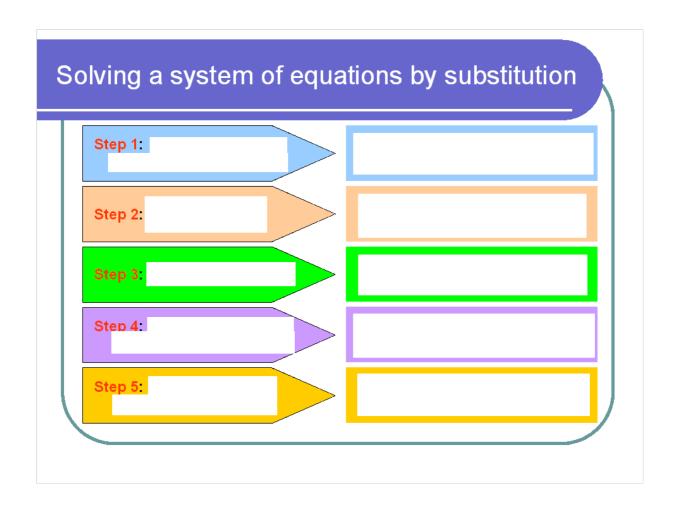
$$y = 3 + x$$

To solve the system, we are looking for the point of

At this point, the _____ for both the *x*- and *y*-variables are ____ in both equations.

This can help us solve the system.

We can **SUBSTITUTE** an expression for one variable into the other equation (note....don't substitute into the same equation!!) Sometimes, we have to rearrage one equation to get one variable in terms of another.


Consider:
$$3y + x = 7$$

$$4x - 2y = 0$$

Example: Solve each of the following linear systems using the method of substitution.

a)
$$y = x + 1$$

 $y = -x + 5$

b)
$$5x + 3y = 14$$

 $2x - y = 10$

Practice! page 92 #1, 2, 4, 7, 8 (ace for each)