MHF 4UI

POLYNOMIAL FUNCTIONS

Sketch a graph of each of the following using the Desmos website or app. As you complete this exercise consider

- Domain and Range
- Shape of the curve.
- Maximum number of x-intercepts.
- The effect of the sign of the coefficient of the dominant term. (leading coefficient)

Go to www.desmos.com type in the equations that are listed and zoom in or out as necessary to find the intercepts of each function listed.

To find the actual value of the intercept click on the line
The intercept points should now be gray.
Click on the points again and the should become black and state the coordiantes

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS

MHF 4UI		POLYNOMIAL FUNCTIONS				
12	$y=x^{3}-5 x^{2}+7 x+5$		1	3	1	1
13	$y=-x^{3}$		-	2	4	1
14	$y=-2 x^{3}+4 x-3$		-	2	4	
15	$y=-x^{3}+2 x^{2}+x$		-	2	4	3

MHF 4UI
POLYNOMIAL FUNCTIONS

MF 4UI

| 20 | $y=-x^{4}+4 x^{2}-1$ | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

1. Using the results from above, what is the maximum number of x-intercepts each function can have?
a) linear \qquad b) quadratic \qquad
c) cubic $\frac{1}{3}$
d) quartic \qquad
2. In which quadrant will the graph of a polynomial function "end" if the coefficient of the dominant term is positive? \qquad
3. In which quadrant will the graph of a polynomial function "end" if the coefficient of the dominant term is negative? \qquad
4. If the degree of the dominant term is odd and the curve "starts" in the third quadrant, the curve will "end" in the \qquad quadrant.
5. If the degree of the dominant term is even and the curve "starts" in the third quadrant, the curve will "end" in the \qquad quadrant.
6. Describe the shape of a function with positive leading coefficients if the function is
a) Cubic
b) Quartic
7. Describe the effect of the leading coefficient being negative.

$$
\text { Reflect in } x \text { axis }
$$

8. For a cubic function:
9. For a quartic function:

The domain is \qquad

